TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION

CLC IEC/TS 61980-3

June 2020

ICS 43.120

English Version

Electric vehicle wireless power transfer (WPT) systems - Part 3: Specific requirements for the magnetic field wireless power transfer systems (IEC/TS 61980-3:2019)

Systèmes de transfert de puissance sans fil (WPT) pour véhicules électriques - Partie 3 : Exigences spécifiques relatives aux systèmes de transfert de puissance sans fil en présence de champs magnétiques (IEC/TS 61980-3:2019) Kontaktlose Energieübertragungssysteme (WPT) für Elektrofahrzeuge - Teil 3: Spezifische Anforderungen für die kontaktlosen Energieübertragungssysteme mit Magnetfeld (IEC/TS 61980-3:2019)

This Technical Specification was approved by CENELEC on 2020-05-25.

CENELEC members are required to announce the existence of this TS in the same way as for an EN and to make the TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

European foreword

This document (CLC IEC/TS 61980-3:2020) consists of the text of IEC/TS 61980-3:2019 prepared by IEC/TC 69 "Electric road vehicles and electric industrial trucks".

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Technical Specification IEC/TS 61980-3:2019 was approved by CENELEC as a European Technical Specification without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60038	NOTE	Harmonized as EN 60038
CISPR 11	NOTE	Harmonized as EN 55011

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	Year	Title	EN/HD	<u>Year</u>
IEC 60529	-	Degrees of protection provided by enclosures (IP Code)	EN 60529	-
IEC 60947-2	-	Low-voltage switchgear and controlgear - Part 2: Circuit-breakers	EN 60947-2	-
IEC 61008-1	-	Residual current operated circuit- breakers without integral overcurrent protection for household and similar uses (RCCBs) - Part 1: General rules	EN 61008-1	-
IEC 61009-1	-	Residual current operated circuit- breakers with integral overcurrent protection for household and similar uses (RCBOs) - Part 1: General rules	EN 61009-1	-
IEC 62423	-	Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses	EN 62423	-
IEC/TS 61980-2	2019	Electric vehicle wireless power transfer (WPT) systems - Part 2: Specific requirements for communication between electric road vehicle (EV) and infrastructure	CLC IEC/TS 61980-2	2020
DIN 7405	1963	Wire staple 24/6 for office-staplers		
-	-	Cold rolled low carbon steel flat products for cold forming – Technical delivery conditions	EN 10130	-

CLC IEC /TS 61980-3:2020 (E)

Publication	<u>Year</u>	Title	<u>EN/HD</u>	<u>Year</u>
ICNIRP Guidelines	1998	ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), International commission on nonionizing radiation protection		
ICNIRP Guidelines	2010	ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz – 100 kHz), International commission on non-ionizing radiation protection		
UL 2251	-	Standard for plugs, receptacles, and couplers for electric vehicles		

Edition 1.0 2019-06

TECHNICAL SPECIFICATION

Electric vehicle wireless power transfer (WPT) systems – Part 3: Specific requirements for the magnetic field wireless power transfer systems

CONTENTS

FO	REWORD	5
INT	RODUCTION	7
1	Scope	8
2	Normative references	8
3	Terms and definitions	9
4	Abbreviations	13
4	Symbols and abbreviated terms	13
5	General	13
6	Classification	13
7	Interoperability	15
7	System infrastructure requirements	15
8	General systems requirements	24
9	Communication	24
10	Protection against electric shock	24
11	Specific requirements for WPT systems	25
12	Power cable assembly requirements	26
13	Constructional requirements	27
14	Strength of materials and parts	27
15	Service and test conditions	
16	Electromagnetic compatibility (EMC)	28
17	Marking and instructions	
101	Test procedure	
Ann WP	nex AA (informative) DD reference EV power circuit (EVPC) for MF-WPT1, MF- T2 and MF-WPT3	37
Ann MF-	nex BB (informative) Circular reference EV power circuit (EVPC) for MF-WPT1, -WPT2 and MF-WPT3	54
Ann	nex CC (informative) Heavy-duty magnetic field WPT	73
Ann	nex DD (informative) Coil position in parking spot	79
Ann	nex EE (informative) Description for system interoperability	80
Bibl	liography	107
Fiqu	ure 101 – Flush mounted	11
Fiqu	ure 102 – Surface mounted	
Figu	ure 103 – Components of an MF-WPT system	
Figu	ure 104 – Control loop of WPT system	21
Fiqu	ure 105 – Illustration of test positions	
Figu	ure AA.1 – Mechanical dimensions of the MF-WPT1/Z1 DD reference secondary	38
Figu	ure AA.2 – Schematic of the EV power electronics for the MF-WPT1/Z1 DD erence EVPC	30
Fin	ure AA.3 – Mechanical dimensions of the MF-WPT1/72 DD reference secondary	
dev	vice	40

Figure AA.4 – Schematic of the EV power electronics for the MF-WPT1/Z2 DD reference EVPC	41
Figure AA.5 – Mechanical dimensions of the MF-WPT2/Z1 DD reference secondary device	42
Figure AA.6 – Schematic of the EV power electronics for the MF-WPT2/Z1 DD reference EVPC	43
Figure AA.7 – Mechanical dimensions of the MF-WPT2/Z2 DD reference secondary device	44
Figure AA.8 – Schematic of the EV power electronics for the MF-WPT2/Z2 DD reference EVPC	45
Figure AA.9 – Mechanical dimensions of the MF-WPT2/Z3 DD reference secondary device	46
Figure AA.10 – Schematic of the EV power electronics for the MF-WPT2/Z3 DD reference EVPC	47
Figure AA.11 – Mechanical dimensions of the MF-WPT3/Z1 DD reference secondary device	48
Figure AA.12 – Schematic of the EV power electronics for the MF-WPT3/Z1 DD reference EVPC	49
Figure AA.13 – Mechanical dimensions of the MF-WPT3/Z2 DD reference secondary device	50
Figure AA.14 – Schematic of the EV power electronics for the MF-WPT3/Z2 DD reference EVPC	51
Figure AA.15 – Mechanical dimensions of the MF-WPT3/Z3 DD reference secondary device	52
Figure AA.16 – Schematic of the EV power electronics for the MF-WPT3/Z3 DD reference EVPC	53
Figure BB.1 – Mechanical dimensions of the MF-WPT1/Z1 circular reference secondary device	55
Figure BB.2 – Schematic of the EV power electronics for the MF-WPT1/Z1 circular reference EVPC	56
Figure BB.3 – Mechanical dimensions of the MF-WPT1/Z2 circular reference secondary device	57
Figure BB.4– Schematic of the EV power electronics for the MF-WPT1/Z2 circular reference EVPC	58
Figure BB.5 – Mechanical dimensions of the MF-WPT1/Z3 circular reference secondary device	59
Figure BB.6 – Schematic of the EV power electronics for the MF-WPT1/Z3 circular reference EVPC.	59
Figure BB.7 – Mechanical dimensions of the MF-WPT2/Z1 circular reference secondary device.	61
Figure BB.8 – Schematic of the EV power electronics for the MF-WPT2/Z1 circular reference EVPC	62
Figure BB.9 – Mechanical dimensions of the MF-WPT2/Z2 circular reference secondary device	63
Figure BB.10 – Schematic of the EV power electronics for the MF-WPT2/Z2 circular reference EVPC	64
Figure BB.11– Mechanical dimensions of the MF-WPT2/Z3 circular reference secondary device	65
Figure BB.12 – Schematic of the EV power electronics for the MF-WPT2/Z3 circular reference EVPC	66

Figure BB.13 – Mechanical dimensions of the MF-WPT3/Z1 circular reference secondary device	67
Figure BB.14 – Schematic of the EV power electronics for the MF-WPT3/Z1 circular reference EVPC	68
Figure BB.15 – Mechanical dimensions of the MF-WPT3/Z2 circular reference secondary device	69
Figure BB.16 – Schematic of the EV power electronics for the MF-WPT2/Z2 circular reference EVPC	70
Figure BB.17 – Mechanical dimensions of the MF-WPT3/Z3 circular reference secondary device	71
Figure BB.18– Schematic of the EV power electronics for the MF-WPT3/Z3 circular reference EVPC	72
Figure CC.1 – Mechanical dimensions of the MF-WPT5 heavy-duty WPT reference primary device	75
Figure CC.2 – Schematic of supply power electronics for the heavy-duty WPT reference primary device	76
Figure CC.3 – Mechanical dimensions of the MF-WPT5 heavy-duty WPT reference secondary device	77
Figure CC.4 – Schematic of the EV power electronics for the MF-WPT5 heavy-duty WPT secondary reference device	78
Figure DD.1 – Coil position in parking spot	79
Figure EE.1 – General schematic of the concept showing the coil system and the ports at which the parameters are defined	81
Figure EE.2 – Example of GA impedance zone with stimulationi results for different reference primary devices and secondary devices	89
Figure EE.3 – Schematic to explain impedance	91
Figure EE.4 – Behaviour of the reflected impedance	92
Figure EE.5 – Position of measurement points	95
Figure EE.6 – Coaxial gauge device	97
Figure EE.7 – Transversal gauge device	99
Figure EE.8 – Design of winding for the transversal gauge device	100
Figure EE.9 – Exemplary test bench setup for secondary interoperability tests	101
Figure EE.10 – Exemplary test bench setup for primary device interoperability tests	103
Figure EE.11 – Test set-up for electric interoperability design testing	105
Figure EE.12 –Test set-up for electric interoperability design testing	105