TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT ### CEN/CLC/TR 17603-31-02 August 2021 ICS 49.140 #### **English version** #### Space Engineering - Thermal design handbook - Part 2: Holes, Grooves and Cavities Ingénierie spatiale - Manuel de conception thermique -Partie 2: Trous, rainures et cavités Raumfahrttechnik - Handbuch für thermisches Design -Teil 2: Löcher, Nuten und Hohlräume This Technical Report was approved by CEN on 14 June 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5. CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. **CEN-CENELEC Management Centre:** Rue de la Science 23, B-1040 Brussels ## **Table of contents** | Europ | ean For | eword | 4 | |----------|--------------|--|----| | 1 Scop | e | | 5 | | 2 Refe | rences | | 6 | | 3 Term | ıs, defii | nitions and symbols | 7 | | 3.1 | Terms | and definitions | 7 | | 3.2 | Symbo | ls | 7 | | 4 Gray | diffuse | surfaces | 8 | | 4.1 | Genera | al | 8 | | 4.2 | Diffuse | incident radiation | 11 | | | 4.2.1 | V-groove | 11 | | | 4.2.2 | Parallel-walled groove | 12 | | | 4.2.3 | Circular-arc groove | 13 | | | 4.2.4 | Axisymmetrical conical cavity | 14 | | | 4.2.5 | Circular cylindrical cavity | 15 | | | 4.2.6 | Spherical cavity | 16 | | Biblio | graphy. | | 18 | | Figure | S | | | | Figure 4 | havi
opei | arent emittance, ε_a , of differently shaped isothermal cavities, all of them ng gray diffuse emitting and reflecting surfaces, as a function of the ning to cavity area radio, $A_{\rm h}/A_{\rm c}$, for several values of the surface tance, ε . Calculated by the compiler. | 10 | | Figure 4 | | arent emittance, ε_a , of a V-groove vs. angle θ , for different values of the ace emittance, ε . Calculated by the compiler | 11 | | Figure 4 | H, fo | -3: Apparent emittance, ε_a , of a parallel-walled groove vs. dimensionless depth, H, for different values of the surface emittance, ε . Calculated by the compiler. | | | Figure 4 | | arent emittance, $\varepsilon_{\rm a}$, of a circular – arc groove vs. opening semiangle, θ , lifferent values of the surface emittance, ε . Calculated by the compiler | 13 | | Figure 4 | | arent emittance, ε_a , of a conical cavity vs. cone angle, θ , for different es of the surface emittance, ε . Calculated by the compiler | 14 | | • | Apparent emittance, ε_a , of a cylindrical cavity vs. dimensionless depth, H , for different values of the surface emittance, ε . Calculated by the compiler15 | 5 | |---|--|---| | • | Apparent absorptance, α_a , of a spherical cavity vs. opening semiangle, θ , | | | | for different values of the surface absorptance, α . Calculated by the compiler17 | , | ### **European Foreword** This document (CEN/CLC/TR 17603-31-02:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN. It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-31. This Technical report (TR 17603-31-02:2021) originates from ECSS-E-HB-31-01 Part 2A. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association. This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace). ### 1 Scope In this Part 2 of the spacecraft thermal control and design data handbooks, the radiant heat transfer properties of cavities that do not contain an absorbing-emitting medium are analyzed. The effect of radiant energy entering a cavity with one or more openings is discussed taking into consideration the characteristics and properties of the constituents. Examples support the solutions discussed. The Thermal design handbook is published in 16 Parts | TR 17603-31-01 | Thermal design handbook – Part 1: View factors | |----------------|--| | TR 17603-31-02 | Thermal design handbook – Part 2: Holes, Grooves and Cavities | | TR 17603-31-03 | Thermal design handbook – Part 3: Spacecraft Surface Temperature | | TR 17603-31-04 | Thermal design handbook – Part 4: Conductive Heat Transfer | | TR 17603-31-05 | Thermal design handbook – Part 5: Structural Materials: Metallic and Composite | | TR 17603-31-06 | Thermal design handbook – Part 6: Thermal Control Surfaces | | TR 17603-31-07 | Thermal design handbook – Part 7: Insulations | | TR 17603-31-08 | Thermal design handbook – Part 8: Heat Pipes | | TR 17603-31-09 | Thermal design handbook – Part 9: Radiators | | TR 17603-31-10 | Thermal design handbook – Part 10: Phase – Change Capacitors | | TR 17603-31-11 | Thermal design handbook – Part 11: Electrical Heating | | TR 17603-31-12 | Thermal design handbook – Part 12: Louvers | | TR 17603-31-13 | Thermal design handbook – Part 13: Fluid Loops | | TR 17603-31-14 | Thermal design handbook – Part 14: Cryogenic Cooling | | TR 17603-31-15 | Thermal design handbook – Part 15: Existing Satellites | | TR 17603-31-16 | Thermal design handbook – Part 16: Thermal Protection System | | | |