

Edition 3.0 2021-10 COMMENTED VERSION

INTERNATIONAL STANDARD

Cable cleats for electrical installations

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 3.0 2021-10 COMMENTED VERSION

INTERNATIONAL STANDARD

Cable cleats for electrical installations

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ISBN 978-2-8322-1037-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWC	PRD	5
1	Scop	e	7
2	Norn	native references	7
3	Term	ns, definitions and abbreviations	8
4	Gene	eral requirements	10
5	Gene	eral notes on tests	10
6	Class		11
0	Clas		
	6.1	Motollia	11.
	6.1.0	Metallic	11
	613	Composite	11
	6.2	Classification according to maximum and minimum temperature	11
	6.3	Classification according to resistance to impact	12
	631	Very light	12
	6.3.2	Light	12
	6.3.3	– 9 Medium	12
	6.3.4	Heavy	12
	6.3.5	Very heavy	12
	6.4	Classification according to type of retention or resistance to	
		electromechanical forces or both	.12
	6.4.1	General	13
	6.4.2	With lateral retention	13
	6.4.3	With axial retention	13
	6.4.4	Resistant to electromechanical forces, withstanding one short circuit	.13
	6.4.5	Resistant to electromechanical forces, withstanding more than one short circuit	13
	6.5	Classification according to environmental influences	13
	6.5.1	Resistant Resistance to ultraviolet light for non-metallic and composite components	13
	652	Resistant Resistance to corrosion for metallic and composite	13
	6.6	Classification according to electromagnetic compatibility	15
	6.6.1	Liable to inductive heating	15
	6.6.2	Not liable to inductive heating	15
7	Mark	ing and documentation	13
	7.1	 Marking	15
	7.2	Durability and legibility	15
	7.3	Documentation	15
8	Cons	struction	17
9	Mech	nanical properties	17
-	9.1	Requirements	17
	9.2	Impact test	18
	9.3	Lateral load test	20
	9.3.1	Lateral load test for cable cleats	20
	9.3.2	Lateral load test for intermediate restraints	23
	9.4	Axial load tests	24

9.5	Test for resistance to electromechanical forces	26
9.5.1	General	26
9.5.2	For cable cleats and intermediate restraints classified in 6.4.4	30
9.5.3	For cable cleats and intermediate restraints classified in 6.4.5	30
10 Fire I	hazards	30
10.1	Flame propagation	31
10.2	Smoke emission	32
10.3	Smoke toxicity	32
11 Envir	onmental influences	33
11.1	Resistance to ultraviolet light	33
11.2	Resistance to corrosion	33
11.2.	1 General	33
11.2.	2 Non-metallic components	34
11.2.	3 Components made of stainless steel	34
11.2.	4 Components made of mild steel or cast iron with metallic coating	34
11.2.	5 Components made of non-ferrous alloys	35
10 Elect	6 Salt spray test	33 26
		30
12.1	Electromagnetic emission	36
12.2 Annov A (inductive neating	36
Annex A (37
Annex B (informative) Calculation of forces caused by short-circuit currents	40
B.1	Characteristics	40
B.2	Specification of the test current.	43
B.3	Calculation of the mechanical forces between conductors	43
Annex C (normative) Identification of MV of HV cable used in short-circuit test	40
Bibliograp	ony	47
List of cor	nments	48
Figure 1 -	- Test niston dimensions	16
Figure 2 -	- Typical arrangement for impact test	10
Figure 3 -	- Typical arrangements for lateral load test for cable cleats	····· 10
Figure 4	Typical arrangements for lateral load test for cable cleats	22
Figure 4 -	Typical arrangements for avial load test for intermediate restraints	ZJ
Figure 5 -	Typical analygement for axial load test	20
	- Typical assemblies for test for resistance to electromechanical force	21
Figure 7 -	- Typical arrangement of three cables in trefoil formation	29
Figure 8 -	- Typical arrangement of cables in flat formation	29
Figure 9 -	- Typical arrangement of the needle-flame test	32
Figure A.	1 – Metallic strap cable cleat for single or bundled cables	38
Figure A.2	2 – Metallic single bolt cable cleat for single cable	38
Figure A.3	3 – Metallic two-bolt cable cleat for single cable	38
Figure A.4	4 – Composite cable cleat for three cables in trefoil formation	38
Figure A.	5 – Non-metallic cable cleat for single cable	38
Figure A.6	6 – Metallic cable cleat for single cable with integral mounting stud	38
Figure A	7 – Non-metallic cable cleat for three cables in flat formation	38
Figure A S	B – Metallic cable cleat for use with channel cable support system	38
. iguio A.	metalle suble stort for des with shuffler suble support system	

Figure A.9 – Non-metallic cable cleat for three cables in trefoil formation	38
Figure A.10 – Non-metallic cable cleat for three cables in trefoil formation with integral ladder rung clamp	39
Figure A.11 – Metallic intermediate restraint for three cables in flat formation	39
Figure A.12 – Composite intermediate restraint for bundled cables	39
Figure B.1 – Short-circuit current of a far-from-generator short circuit with constant a.c. component	41
Figure B.2 – Short-circuit current of a near-to-generator short circuit with decaying a.c. component	42
Figure B.3 – Two parallel conductors	44
Table 1 – Maximum temperature for permanent application	12
Table 1 – Maximum temperature for permanent applicationTable 2 – Minimum temperature for permanent application	12 12
Table 1 – Maximum temperature for permanent applicationTable 2 – Minimum temperature for permanent applicationTable 3 – Classification for resistance against corrosion for stainless steel components	12 12 14
Table 1 – Maximum temperature for permanent applicationTable 2 – Minimum temperature for permanent applicationTable 3 – Classification for resistance against corrosion for stainless steel componentsTable 4 – Resistance to corrosion	12 12 14
Table 1 – Maximum temperature for permanent applicationTable 2 – Minimum temperature for permanent applicationTable 3 – Classification for resistance against corrosion for stainless steel componentsTable 4 – Resistance to corrosionTable 4 – Classification for resistance against corrosion for coated mild steel or cast-iron components	12 12 14 14
Table 1 – Maximum temperature for permanent applicationTable 2 – Minimum temperature for permanent applicationTable 3 – Classification for resistance against corrosion for stainless steel componentsTable 4 – Resistance to corrosionTable 4 – Classification for resistance against corrosion for coated mild steel or cast-ironComponentsTable 5 – Impact test values	12 12 14 14 14 20
Table 1 – Maximum temperature for permanent applicationTable 2 – Minimum temperature for permanent applicationTable 3 – Classification for resistance against corrosion for stainless steel componentsTable 4 – Resistance to corrosionTable 4 – Classification for resistance against corrosion for coated mild steel or cast-ironComponentsTable 5 – Impact test valuesTable 6 – Component compliance and classification for resistance against corrosion	12 12 14 14 20 34

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CABLE CLEATS FOR ELECTRICAL INSTALLATIONS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This commented version (CMV) of the official standard IEC 61914:2021 edition 3.0 allows the user to identify the changes made to the previous IEC 61914:2015 edition 2.0. Futhermore, comments from IEC SC 23A experts are provided to explain the reasons of the most relevant changes.

A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text. Experts' comments are identified by a blue-background number. Mouse over a number to display a pop-up note with the comment.

This publication contains the CMV and the official standard. The full list of comments is available at the end of the CMV.

IEC 61914 has been prepared by subcommittee 23A: Cable management systems, of IEC technical committee 23: Electrical accessories. It is an International Standard.

This third edition cancels and replaces the second edition published in 2015. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) requirements for mandrels used in testing rationalised and detailed in the general test requirements (Clause 5);
- b) definition of liner added and test requirements where liners and other optional parts are used;
- c) definitions for LV, MV and HV cables added and test requirements where MV & HV cable are used ;
- d) new corrosion resistance classes for plated products added;
- e) new requirements and test for durability and legibility of markings added;
- f) new test requirements for axial load testing of cleats for more than one cable added;
- g) lateral load test requirements for intermediate restraints added.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
23A/976/FDIS	23A/982/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

In this standard, the following print types are used:

- requirements proper: in roman type;
- test specifications: in italic type;
- notes: in smaller roman type.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.