ILN4S

Institut luxembourgeois de la normalisation de l'accréditation, de la sécurité et qualité des produits et services

ILNAS-EN IEC/IEEE 62209-1528:2021

Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-

Messverfahren für die Beurteilung der spezifischen Absorptionsrate bei der Exposition von Personen gegenüber hochfrequenten Feldern von

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de l'exposition humaine aux champs radiofréquence produits par les

National Foreword

This European Standard EN IEC/IEEE 62209-1528:2021 was adopted as Luxembourgish Standard ILNAS-EN IEC/IEEE 62209-1528:2021.

Every interested party, which is member of an organization based in Luxembourg, can participate for FREE in the development of Luxembourgish (ILNAS), European (CEN, CENELEC) and International (ISO, IEC) standards:

- Participate in the design of standards
- Foresee future developments
- Participate in technical committee meetings

https://portail-qualite.public.lu/fr/normes-normalisation/participer-normalisation.html

THIS PUBLICATION IS COPYRIGHT PROTECTED

Nothing from this publication may be reproduced or utilized in any form or by any mean - electronic, mechanical, photocopying or any other data carries without prior permission!

EUROPEAN STANDARD EUROPEAN STA

NORME EUROPÉENNE

EUROPÄISCHE NORM

November 2021

ICS 17.220.20

Supersedes EN 62209-1:2016, EN 62209-2:2010 and all of its amendments and corrigenda (if any)

English Version

Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices -Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) (IEC/IEEE 62209-1528:2020)

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de l'exposition humaine aux champs radiofréquence produits par les dispositifs de communications sans fil tenus à la main ou portés près du corps - Partie 1528: Modèles humain, instrumentation et procédures (Plage de fréquences comprise entre 4 MHz et 10 GHz) (IEC/IEEE 62209-1528:2020) Messverfahren für die Beurteilung der spezifischen Absorptionsrate bei der Exposition von Personen gegenüber hochfrequenten Feldern von handgehaltenen und am Körper getragenen schnurlosen Kommunikationsgeräten - Teil 1528: Körpermodelle, Messgeräte und -verfahren (Frequenzbereich von 4 MHz bis 10 GHz) (IEC/IEEE 62209-1528:2020)

This European Standard was approved by CENELEC on 2021-06-03. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

European foreword

This document (EN IEC/IEEE 62209-1528:2021) consists of the text of IEC/IEEE 62209-1528:2020 prepared by IEC/TC 106 "Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure".

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2022-05-19 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2024-11-19 document have to be withdrawn

This document supersedes EN 62209-1:2016 and EN 62209-2:2010 and all of their amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC/IEEE 62209-1528:2020 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

ISO/IEC 17025:2017	NOTE	Harmonized as EN ISO/IEC 17025:2017 (not modified)
IEC 62479:2010	NOTE	Harmonized as EN 62479:2010 (modified)
IEC 62311:2019	NOTE	Harmonized as EN IEC 62311:2020 (not modified)
IEC 60154-2	NOTE	Harmonized as EN 60154-2
ISO 10012:2003	NOTE	Harmonized as EN ISO 10012:2003 (not modified)
ISO/IEC 17043:2010	NOTE	Harmonized as EN ISO/IEC 17043:2010 (not modified)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	Year
IEC 62209-3	2019	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)	EN IEC 62209-3	2019
ISO/IEC Guide 98-3	2008	Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)	-	-

IEC/IEEE 62209-1528

Edition 1.0 2020-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de l'exposition humaine aux champs radiofréquence produits par les dispositifs de communications sans fil tenus à la main ou portés près du corps – Partie 1528: Modèles humains, instrumentation et procédures (Plage de fréquences comprise entre 4 MHz et 10 GHz)

- 2 -

CONTENTS

FC	DREWO	RD	14
IN	TRODU	CTION	17
1	Scop	e	
2	Norm	ative references	
3	Term	s and definitions	
4	Symb	ools and abbreviated terms	
•	4 1	Physical quantities	26
	4.2	Constants	
	4.3	Abbreviated terms	
5	Quicl	start guide and evaluation plan checklist	
6	Meas	surement system specifications	
	6.1	General requirements for full SAR testing	
	6.2	Phantom specifications	
	6.2.1	General	
	6.2.2	Basic phantom parameters	31
	6.2.3	Head phantom	
	6.2.4	Flat phantom	34
	6.2.5	Device-specific phantoms	35
	6.3	Influence of hand on SAR in head	35
	6.4	Scanning system requirements	
	6.5	Device holder specifications	
	6.6	Characteristics of the readout electronics	37
7	Proto	col for SAR assessment	37
	7.1	General	37
	7.2	Measurement preparation	37
	7.2.1	Preparation of tissue-equivalent medium and system check	37
	7.2.2	Preparation of the wireless communication DUT	
	7.2.3	DUT operating mode requirements	
	7.2.4	Positioning of the DUT relative to the phantom	40
	7.2.5	Antenna configurations	57
	7.2.6	Options and accessories	57
	7.2.7	DUTs with alternative form factor	57
	7.2.8	Test frequencies for DUTs	58
	7.3	Tests to be performed for DUTs	58
	7.3.1	General	58
	7.3.2	Basic approach for DUT testing	59
	7.4	Measurement procedure	60
	7.4.1	General	60
	7.4.2	Full SAR testing procedure	60
	7.4.3	Drift	64
	7.4.4	SAR measurements of DUTs with multiple antennas or multiple transmitters	66
	7.5	Post-processing of SAR measurement data	72
	7.5.1	Interpolation	72
	7.5.2	Extrapolation	72
	7.5.3	Definition of the averaging volume	72

IEC/IEEE © IEC/IEE	62209-1528:2020 - 3 - E 2020	
7.5.4	Searching for the maxima	73
7.6	Time-period averaged SAR considerations	73
7.6.1	General	73
7.6.2	RF conducted power	73
7.6.3	Time-period averaged SAR measurement settings for SAR measurement methods	73
7.6.4	Exposure condition and test position considerations	74
7.6.5	Time-period averaged SAR for simultaneous transmission	74
7.6.6	TX factor assessment	74
7.6.7	SAR measurements	
768	Uncertainty in TPAS evaluations	75
7 7	Proximity sensors considerations	76
771	General	76
7.7.2	Procedures for determining proximity sensor triggering distances	77
7.7.2	Procedure for determining proximity sensor coverage area	80
7.7.3	SAB massurement presedure involving provimity sensor coverage area	
7.7.4	SAR measurement procedure involving proximity sensors	01
7.0	SAR correction for deviations of complex permittivity from targets	
7.8.1		
7.8.2	SAR correction formula	
7.8.3	Uncertainty of the correction formula	83
7.9	Minimization of testing time	83
7.9.1	General	83
7.9.2	Fast SAR testing	
7.9.3	SAR test reductions	
8 Meas	surement uncertainty estimation	
8.1	General	
8.2	Requirements on the uncertainty evaluation	
8.3	Description of uncertainty models	
8.3.1	General	
8.3.2	SAR measurement of a DUT	
8.3.3	System validation and system check measurement	102
8.3.4	System check repeatability and reproducibility	
835	East SAR testing (relative measurement)	102
8 /	Parameters contributing to uncertainty	10/
0. 4 8/1/1	Measurement system errors	
Q / 2	Phantom and dovice (DUT or validation antenna) errors	105
0.4.2	Corrections to the SAP result (if applied)	103
0.4.3 0 Moor	Corrections to the SAR result (in applied)	107
9 Meas		
9.1	General	
9.2	Items to be recorded in the measurement report	
Annex A (normative) SAR measurement system verification	112
A.1	Overview	112
A.2	System check	112
A.2.1	Purpose	
A.2.2	Phantom set-up	
A.2.3	System check antenna	
A.2.4	System check antenna input power measurement	114
A.2.5	System check procedure	
A.2.6	System check acceptance criteria	

	- 4 - IEC/IEEE 62209-15	528:2020
	© IEC/IE	
A.3 Sys		
A.3.1	Purpose	
A.3.2	Phantom set-up	
A.3.3	System validation antennas	
A.3.4	Input power measurement	
A.3.5	System validation procedure	
A.4 Fas	Concret	
A.4.1	General	
A.4.2	Fast SAR testing system validation	
A.4.3	Fast SAR testing system check	
Annex B (info	rmative) SAR test reduction supporting information	
B.1 Gei	neral	122
B.2 Tes	t reduction based on characteristics of DUT design	
B.2.1	General	122
B.2.2	Statistical analysis overview	
B.2.3	Analysis results	123
B.2.4	Conclusions	126
B.2.5	Expansion to multi-transmission antennas	126
B.3 Tes	t reduction based on analysis of SAR results on other signal modulation	s126
B.3.1	General	126
B.3.2	Analysis results	127
B.4 Tes	t reduction based on SAR level analysis	
B.4.1	General	128
B.4.2	Statistical analysis	129
B.4.3	Test reduction applicability example	
B.5 Oth	er statistical approaches to search for the high SAR test configurations .	
B.5.1	General	
B.5.2	Test reductions based on a DOE	
B.5.3	One factor at a time (OFAT) search	
B.5.4	Analysis of unstructured data	
Annex C (info	rmative) Measurement uncertainty of results obtained from specific fast	
SAR testing n	nethods	135
C.1 Gei	neral	
C.2 Mea	asurement uncertainty evaluation – contributing parameters	
C.2.1	General	
C.2.2	Probe calibration and system calibration drift	
C.2.3	Isotropy	
C.2.4	Probe positioning	
C.2.5	Mutual sensor coupling	
C.2.6	Scattering within the probe array	
C.2.7	Sampling error	
C.2.8	Array boundaries	
C.2.9	Probe or probe array coupling with the DUT	
C.2.10	Measurement system immunity / secondary reception	
C.2.11	Deviations in phantom shape	
C.2.12	Spatial variation in dielectric properties	
C 2 13	Reconstruction	140
C.3 Un	certainty budget	
Annex D (nori	mative) SAR system validation antennas	
(, ,	

IEC/IEEE © IEC/IEE	62209-1528:2020 – 5 – E 2020	
D.1	General antenna requirements	143
D.2	Standard dipole antenna	143
D.2.1	Mechanical description	143
D.2.2	Numerical target SAR values	146
D.3	Standard wavequide	148
D.3.1	Mechanical description	148
D.3.2	Numerical target SAR values	149
D 4	System validation antennas for below 150 MHz	149
D.4.1	General	149
D 4 2	Confined loop antenna	150
D 4 3	Meander dipole antenna	152
D 5	Orthogonal E-field source – VPIFA	153
D 5 1	Mechanical description	153
D 5 2	Numerical target SAR values	156
Annex F (normative) Calibration and characterization of dosimetric (SAR) probes	157
		157
		157
E.2	Linearity	158
E.3	Assessment of the sensitivity of the dipole sensors	158
E.3.1		158
E.3.2	I wo-step calibration procedures	158
E.3.3	One-step calibration procedure – reference antenna method	164
E.3.4	One-step calibration procedure – coaxial calorimeter method	168
E.4	Isotropy	170
E.4.1	Axial isotropy	170
E.4.2	Hemispherical isotropy	170
E.5	Lower detection limit	175
E.6	Boundary effect	176
E.7	Response time	176
Annex F (informative) Example recipes for phantom tissue-equivalent media	177
F.1	General	177
F.2	Ingredients	177
F.3	Tissue-equivalent medium liquid formulas (permittivity/conductivity)	178
Annex G ((normative) Phantom specifications	180
G.1	Rationale for the phantom characteristics	180
G.1.1	General	180
G.1.2	2 Rationale for the SAM phantom	180
G.1.3	8 Rationale for the flat phantom	180
G.2	SAM phantom specifications	181
G.2.1	General SAM phantom specifications	181
G.2.2	2 SAM phantom shell specification	185
G.3	Flat phantom specifications	187
G.4	Justification of flat phantom dimensions	188
G.5	Rationale for tissue-equivalent media	191
G.6	Definition of a phantom coordinate system and a DUT coordinate system	193
Annex H (informative) Measurement of the dielectric properties of tissue-equivalent	
media and	uncertainty estimation	195
H.1	Overview	195
H.2	Measurement techniques	195
H.2.1	General	195

	– 6 – IEC/IEEE 6220 © IE	9-1528:2020 C/IEEE 2020
H.2.2	Instrumentation	
H.2.3	General principles	
H.3	Slotted coaxial transmission line	
H.3.1	General	
H.3.2	Equipment set-up	
H.3.3	Measurement procedure	
H.4	Contact coaxial probe	
H.4.1	General	
H.4.2	Equipment set-up	
H.4.3	Measurement procedure	
H.5	TEM transmission line	
H.5.1	General	
H.5.2	Equipment set-up	200
H 5 3	Measurement procedure	200
Н 6	Dielectric properties of reference liquids	201
Annex I (ii	nformative) Studies for potential hand effects on head SAR	204
1 1		204
1.1	Deskground	204
1.2	Dackground	204
1.2.1		
1.2.2	Hand phantoms	
1.3	Summary of experimental studies	
1.3.1	Experimental studies using fully compliant SAR measurement syst	ems 205
1.3.2	Experimental studies using other SAR measurement systems	
1.4	Summary of computational studies	
1.5		
Annex J (I	informative) Skin enhancement factor	
J.1	Background	207
J.2	Rationale	208
J.3	Simulations	208
J.4	Recommendation	
Annex K (normative) Application-specific phantoms	211
K.1	General	211
K.2	Phantom basic requirements	211
K.3	Examples of specific alternative phantoms	211
K.3.1	Face-down SAM phantom	211
K.3.2	Head-stand SAM phantom	212
K.3.3	Wrist phantom	
K.4	Scanning and evaluation requirements	213
K.5	Uncertainty assessment	213
K.6	Reporting	213
Annex L (curved co	normative) Fast compliance evaluations using a flat-bottom phantom wi rner (Uniphantom)	th a 214
L.1	General	214
L.2	Uniphantom	214
L.3	Device positions for compliance testing and definitions of handset shap	es214
L.3.1	General	214
L.3.2	Handsets with a straight form factor	
L.3.3	Handsets with a clamshell form factor	
L.4	Testing procedure	215

IEC/IEEE © IEC/IE	E 62209-1528:2020 – 7 – EE 2020	
L.4.1	1 General	215
L.4.2	2 Handsets with straight form factors	215
L.4.3	3 Handsets with clamshell form factors	216
L.5	Uncertainty of SAR measurement results using Uniphantom	217
Annex M	(informative) Wired hands-free headset testing	218
M 1	Concept	218
M.2	Example results	219
M.3	Discussion	220
Annex N	(informative) Applying the head SAR test procedures	221
Annex O	(normative) Uncertainty analysis for measurement system manufacturers and	
calibratio	on laboratories	224
0.1	Probe linearity and detection limits	224
0.2	Broadband signal uncertainty	225
0.3	Boundary effect	225
0.4	Field-probe readout electronics uncertainty	226
O.5	Signal step-response time uncertainty	226
0.6	Probe integration-time uncertainty	227
O.6.	1 General	227
O.6.	2 Probe integration-time uncertainty for periodic pulsed signals	227
O.6.	3 Probe integration-time uncertainty for non-periodic signals	228
0.7	Contribution of mechanical constraints	228
0.7.	1 Mechanical tolerances of the probe positioner (directions parallel to phantom surface)	228
0.7.	2 Probe positioning with respect to phantom shell surface	228
0.7.	3 First-order approximation of exponential decay	229
0.8	Contribution of post-processing	229
0.8.	1 General	229
0.8.	2 Evaluation test functions	230
0.8.	3 Data-processing algorithm uncertainty evaluations	232
0.9	Tissue-equivalent medium properties uncertainty	235
O.9.	1 General	235
O.9.	2 Medium density	235
O.9.	3 Medium conductivity uncertainty	235
O.9.	4 Medium permittivity uncertainty	235
O.9.	5 Assessment of dielectric properties measurement uncertainties	235
O.9.	6 Medium temperature uncertainty	237
Annex P	(normative) Post-processing techniques	239
P.1	Extrapolation and interpolation schemes	239
P.1.	1 General	239
P.1.	2 Extrapolation schemes	239
P.1.	3 Interpolation schemes	239
P.2	Averaging scheme and maximum finding	239
P.2.	1 Volume average schemes	239
P.2.2	2 Finding the psSAR and estimating the uncertainty	240
Annex Q	(informative) Rationale for time-period averaged SAR test procedure	241
Annex R	(normative) Measurement uncertainty analysis for testing laboratories	242
R.1	RF ambient conditions	242
R.2	Device positioning and holder uncertainties	242
R.2.	1 General	242

	– 8 – IEC/IEEE 62209 © IEC)-1528:2020)/IEEE 2020
R.2.2	2 Device holder perturbation uncertainty	243
R.2.3	B DUT positioning uncertainty with a specific test device holder: Type	A244
R.3	Probe modulation response	244
R.4	Time-period averaged SAR	245
R.4.1	General	245
R.4.2	2 TX factor uncertainty	245
R.5	Measured SAR drift	246
R.5.1	General	246
R.5.2	2 Accounting for drift	246
R.6	SAR scaling uncertainty	247
Annex S (normative) Validation antenna SAR measurement uncertainty	248
S.1	Deviation of experimental antennas	248
S.2	Other uncertainty contributions when using system validation antennas	248
Annex T (normative) Interlaboratory comparisons	250
T.1	Purpose	
T.2	hantom set-up	
Т.3	Reference devices	
T.4	Power set-up	250
T.5	Interlaboratory comparison – procedure	251
Annex U ((informative) Determination of the margin for compliance evaluation using	g the
Uniphanto	om	
U.1	General	252
U.2	Deviation of the psSAR measured using the Uniphantom from the psSAR measured using the SAM phantom	₹ 252
U.3	Determination of margin based on 95 % confidence interval	253
U.4	Examples of the determination of the margin factor	253
U.4.1	Margin for handsets with straight form factors at flat-bottom position	ı 253
U.4.2	2 Margin for handsets with straight form factors (except smart phones flat-bottom position)	at 255
U.4.3	8 Margin for smart phones at flat-bottom position	257
U.4.4	Margin for smart phones at corner position	259
U.4.5	5 Margin for handsets with clamshell form factors at corner position	261
Annex V (informative) Automatic input power level control for system validation	264
V.1	General	
V.2	Operational mechanism of AIPLC	
Annex W	(informative) LTE test configurations supporting information	
W.1	General	
W.2	Study 1	
W.3	Study 2	
W.4	Justifications of relative standard deviations	
Bibliograp	ohy	271
5 1		
Figure 1 -	- Quick start guide	29
Ciaura 0	Dimensions of the elliptical phantam	25

	.55
Figure 3 – Mounting of the DUT in the device holder using low-permittivity and low-loss	
foam to avoid changes of DUT performance by the holder material	.37
Figure 4 – Designation of DUT reference points	.41

IEC/IEEE 62209-1528:2020 - 9 - © IEC/IEEE 2020	
Figure 5 – Measurements performed by shifting a large device over the efficient measurement area of the system including overlapping areas – in this case: six tests performed	42
Figure 6 – Test positions for body-worn devices	43
Figure 7 – Device with swivel antenna	44
Figure 8 – Test positions for body supported devices	45
Figure 9 – Test positions for desktop devices	47
Figure 10 – Test positions for front-of-face devices	48
Figure 11 – Test position for hand-held devices, not used at the head or torso	49
Figure 12 – Test position for limb-worn devices	49
Figure 13 – Test position for clothing-integrated wireless communication devices	50
Figure 14 – Possible test positions for a generic device	51
Figure 15 – Vertical and horizontal reference lines and reference points A and B on two example device types: a full touch-screen smart phone (left) and a DUT with a keypad (right)	53
Figure 16 – Cheek position of the DUT on the left side of SAM where the device position shall be maintained for the phantom test set-up	56
Figure 17 – Tilt position of the DUT on the left side of SAM	56
Figure 18 – An alternative form factor DUT with reference points and reference lines	57
Figure 19 – Block diagram of the tests to be performed	60
Figure 20 – Orientation of the probe with respect to the line normal to the phantom surface, for head and flat phantoms, shown at two different locations	64
Figure 21 – Measurement procedure for different types of correlated signals	72
Figure 22 – Positioning of the surfaces and edges of the DUT for determining the proximity sensor triggering distance	79
Figure 23 – Positioning of the edges of the DUT to determine proximity sensor triggering distance variations with the edge positioned at different angles from the perpendicular position.	80
Figure 24 – Fast SAR Procedure A	87
Figure 25 – Fast SAR Procedure B	89
Figure 26 – Modified chart of Figure 19	93
Figure 27 – Use of conducted power for LTE mode selection, for Band 1 (1 920 MHz to 1 980 MHz) (MPR values are in dB)	97
Figure 28 – Use of conducted power for LTE mode selection, for Band 17 (704 MHz to 716 MHz) (MPR values are in dB)	98
Figure A.1 – Test set-up for the system check	. 114
Figure B.1 – Distribution of Tilt/Cheek	. 124
Figure B.2 – SAR relative to SAR in position with maximum SAR in GSM mode	. 128
Figure B.3 – Two points identifying the minimum distance between the position of the interpolated maximum SAR and the points at $0.6 \times SAR_{max}$	130
Figure B.4 – Histogram for D_{min} in the case of GSM 900 and iso-level at 0,6 × SAR_{max}	. 130
Figure B.5 – Histogram for random variable <i>Factor</i> 1g,1800 ·····	. 132
Figure D.1 – Mechanical details of the standard dipoles	. 145
Figure D.2 – Standard waveguide (dimensions are according to Table D.3)	. 148
Figure D.3 – Drawing of the CLA that corresponds to a resonant loop integrated in a metallic structure to isolate the resonant structure from the environment	150
Figure D.4 – Mechanical details of the meander dipoles for 150 MHz	. 152

– 10 – IEC/IEEE 62209-152 © IEC/IEE	28:2020 E 2020
Figure D.5 – VPIFA validation antenna	155
Figure D.6 – Mask for positioning VPIFAs	155
Figure E.1 – Experimental set-up for assessment of the sensitivity (conversion factor) using a vertically-oriented rectangular waveguide	162
Figure E.2 – Illustration of the antenna gain evaluation set-up	165
Figure E.3 – Schematic of the coaxial calorimeter system	169
Figure E.4 – Set-up to assess hemispherical isotropy deviation in tissue-equivalent medium	171
Figure E.5 – Alternative set-up to assess hemispherical isotropy deviation in tissue- equivalent medium	172
Figure E.6 – Experimental set-up for the hemispherical isotropy assessment	173
Figure E.7 – Conventions for dipole position (ζ) and polarization (θ)	174
Figure E.8 – Measurement of hemispherical isotropy with reference antenna	175
Figure G.1 – Illustration of dimensions in Table G.1 and Table G.2	182
Figure G.2 – Close up side view of phantom showing the ear region	184
Figure G.3 – Side view of the phantom showing relevant markings	185
Figure G.4 – Sagittally bisected phantom with extended perimeter (shown placed on its side as used for device SAR tests)	186
Figure G.5 – Picture of the phantom showing the central strip	186
Figure G.6 – Cross-sectional view of SAM at the reference plane	187
Figure G.7 – Dimensions of the flat phantom set-up used for deriving the minimal phantom dimensions for W and L for a given phantom depth D	189
Figure G.8 – FDTD predicted error in the 10 g psSAR as a function of the dimensions of the flat phantom compared with an infinite flat phantom at 800 MHz	190
Figure G.9 – Complex permittivity of human tissues compared to the phantom target properties	193
Figure G.10 – Example reference coordinate system for the left-ear ERP of the SAM phantom	194
Figure G.11 – Example coordinate system on a DUT	194
Figure H.1 – Slotted line set-up	196
Figure H.2 – An open-ended coaxial probe with inner and outer radii <i>a</i> and <i>b</i> , respectively	198
Figure H.3 – TEM line dielectric properties test set-up [85]	200
Figure J.1 – SAR and temperature increase (ΔT) distributions simulated for a three-layer (skin, fat, muscle) planar torso model	207
Figure J.2 – Statistical approach to protect 90 % of the population	209
Figure J.3 – psSAR skin enhancement factors	210
Figure K.1 – SAM face-down phantom	212
Figure K.2 – SAM head-stand phantom	212
Figure K.3 – Wrist phantom	213
Figure L.1 – Cross section of the unified phantom (Uniphantom) with its dimensions	214
Figure L.2 – Measurement positions of handsets with straight and clamshell form factors	215
Figure L.3 – Flow chart of testing procedure for handsets with straight form factors	216
Figure L.4 – Flow chart of testing procedure for handsets with clamshell form factors	217
Figure M.1 – Configuration of a personal wired hands-free headset	218

ILNAS-EN IEC/IEEE 62209-1528:2021

IEC/IEEE 62209-1528:2020 - 11 - © IEC/IEEE 2020	
Figure M.2 – Configuration without a personal wired hands-free headset	219
Figure O.1 – Orientation and surface of averaging volume relative to phantom surface	235
Figure U.1 – Categories (classes) for comparison of the measured psSAR between the Uniphantom (SAR_{UNI}) and the SAM phantom (SAR_{SAM})	252
Figure U.2 – Histogram of the deviation of the 10 g psSAR of 45 handsets with straight form factors positioned at the flat bottom of the Uniphantom	254
Figure U.3 – Histogram of the deviation of the 1 g psSAR of 40 handsets with straight form factors positioned at the flat bottom of the Uniphantom	255
Figure U.4 – Histogram of the deviation of the 10 g psSAR of 25 handsets with straight form factors positioned at the flat bottom of the Uniphantom	256
Figure U.5 – Histogram of the deviation of the 1 g psSAR from 20 handsets with straight form factors positioned at the flat bottom of the Uniphantom	257
Figure U.6 – Histogram of the deviation of the 10 g psSAR of 20 handsets with straight form factors or smart phones positioned at the flat bottom of the Uniphantom	258
Figure U.7 – Histogram of the deviation of the 1 g psSAR of 20 handsets with straight form factors or smart phones positioned at the flat bottom of the Uniphantom	259
Figure U.8 – Histogram of the deviation of the 10 g psSAR of 20 handsets with straight form factors or smart phones positioned at the corner of the Uniphantom	260
Figure U.9 – Histogram of the deviation of the 1 g psSAR of 19 handsets with straight form factors or smart phones positioned at the corner of the Uniphantom	261
Figure U.10 – Histogram of the deviation of the 10 g psSAR of 20 handsets with clamshell form factors at the corner of the Uniphantom	262
Figure U.11 – Histogram of the deviation of the 1 g psSAR of 19 handsets with clamshell form factors at the corner of the Uniphantom	263
Figure V.1 – Generated RF input power variations to operation time without and with application of AIPLC	264
Figure V.2 – The system block diagram of the AIPLC	265
Figure V.3 – Power variation characteristics by adjusting the amplifier or signal generator outputs	265
Figure W.1 – Low, middle, and high channels at 2 GHz band (Band 1)	267
Figure W.2 – RF conducted power versus 10 g psSAR	268
Figure W.3 – 1 g SAR as a function of RF conducted power in various test conditions	269
Table 1 – Evaluation plan checklist	28
Table 2 – Dielectric properties of the tissue-equivalent medium	32
Table 3 – Area scan parameters	63
Table 4 – Zoom scan parameters	63
Table 5 – Example method to determine the combined SAR value using Alternative 1	70
Table 6 – Root-mean-squared error SAR correction formula as a function of themaximum change in permittivity or conductivity [28]	83
Table 7 – Threshold values <i>TH</i> (<i>f</i>) used in this proposed test reduction protocol	93
Table 8 – Divisors for common probability density functions (PDFs)	101
Table 9 – Uncertainty budget template for evaluating the uncertainty in the measured value of 1 g or 10 g psSAR from a DUT or validation antenna (N = normal, R =	
rectangular)	103
change in permittivity or conductivity	107

	– 12 –	IEC/IEEE 62209-1528:2020 © IEC/IEEE 2020
Table B.2 – Statistical analysis results of P	(Tilt/Cheek > x) for va	arious <i>x</i> values124
Table B.3 – Statistical analysis results of P	T(T) = x for 1	g and 10 g psSAR124
Table B.4 – Statistical analysis results of P Iocations	(Tilt/Cheek > x) for variable	arious antenna 125
Table B.5 – Statistical analysis results of P	(Tilt/Cheek > x) for va	arious frequency bands 125
Table B.6 – Statistical analysis results of P	(Tilt/Cheek > x) for va	arious device types
Table B.7 – Distance D_{\min}^* for various "iso-	level" values	130
Table B.8 – Experimental thresholds to hav measured SAR value from the area scan w	/e a 95 % probability ill also have a psSAR	that the maximum
Table B.9 – SAR values from the area scar	n (GSM 900 band): Ex	ample 1133
Table B.10 – SAR values from the area sca	an (GSM 900 band): E	Example 2 133
Table C.1 – Measurement uncertainty budg Class 2 fast SAR testing, for tests performed modulation	get for relative SAR m ed within one frequen	easurements using cy band and 141
Table C.2 – Measurement uncertainty budg	get for system check u	using Class 2 fast SAR
Table D.1. Machanical dimensions of the	roforonoo dinalaa	
Table D.1 – Mechanical dimensions of the	W/kg) for standard di	
Table D.2 – Numerical target SAR values (etenderd weveguide	
Table D.3 – Mechanical dimensions of the	stalidard waveguide.	
Table D.4 – Numerical target SAR values f		
Table D.6 Mechanical dimensions of the	roforonco moondor di	nolo 152
Table D.7 – Numerical target SAR value (N	V/kg) for meander din	pole
Table D.8 – Dimensions for VPIEA antenna	as at different frequen	cies 154
Table D.9 – Electric properties for the diele	ectric lavers for VPIFA	antennas 155
Table D 10 $-$ Numerical target SAR values	for VPIFAs on the fla	t phantom 156
Table E 1 – Uncertainty analysis for transfe	er calibration using te	mperature probes 160
Table E $2 - $ Guidelines for designing calibr	ation wavequides	163
Table E.3 – Uncertainty analysis of the pro-	be calibration in wave	auide 164
Table E 4 – Uncertainty template for evalue	ation of reference ant	enna gain 166
Table E.5 – Uncertainty template for calibr	ation using reference	antenna 167
Table E.6 – Uncertainty components for pr	obe calibration using	thermal methods 170
Table F.1 – Suggested recipes for achievir	ig target dielectric pro	perties, 30 MHz to
900 MHz		
Table F.2 – Suggested recipes for achievin10 000 MHz	ig target dielectric pro	perties, 1 800 MHz to 179
Table G.1 – Dimensions used in deriving S male head data (Gordon et al. [61])	AM phantom from the	e ARMY 90th percentile
Table G.2 – Additional SAM dimensions co ARMY 90th percentile male head data (Go measurement section	mpared with selected rdon et al. [61]) – spe	dimensions from the cialist head 183
Table G.3 – Parameters used for calculation	on of reference SAR v	alues in Table D.2 190
Table H.1 – Parameters for calculating the	dielectric properties	of various reference
	oo liquido et 20.º0	
Table 1.1 poSAD correction factors	ce ilquius at 20 °C	
Table J. I -psoAR correction factors		

ILNAS-EN IEC/IEEE 62209-1528:2021

IEC/IEEE 62209-1528:2020 – © IEC/IEEE 2020	13 –	
Table N.1 – SAR results tables for example te	st results in GSM 850 band	221
Table N.2 – SAR results tables for example te	est results in GSM 900 band	222
Table N.3 – SAR results tables for example te	est results in GSM 1800 band	222
Table N.4 – SAR results tables for example te	est results in GSM 1900 band	223
Table O.1 – Parameters for the reference fund	ction <i>f</i> ₁ in Formula (O.12)	231
Table O.2 – Reference SAR values from the c	listribution functions f_1 , f_2 , and f_3	232
Table 0.3 – Example uncertainty template and permittivity (ε'_{r}) and conductivity (σ) measure	d example numerical values for ment	237
Table S.1 – Uncertainties relating to the devia waveguide from theory	tions of the parameters of the standard	248
Table S.2 – Other uncertainty contributions re Annex D	lating to the dipole antennas specified in	249
Table S.3 – Other uncertainty contributions re specified in Annex D	lating to the standard waveguides	249
Table U.1 – Summary of information to detern form factors positioned at the flat bottom of th	nine the margin for handsets with straight e Uniphantom2	254
Table U.2 – Summary of information to detern form factors, including slide-type and bar hand at the flat bottom of the Uniphantom	nine the margin for handsets with straight dsets (except smart phones), positioned	256
Table U.3 – Summary of information to detern positioned at the flat bottom of the Uniphanton	nine the margin for the smart phones	258
Table U.4 – Summary of information to detern positioned at the corner of the Uniphantom	nine the margin for smart phones	260
Table U.5 – Statistical analysis results of P(Ti	It/Cheek > x) for various device types	261
Table U.6 – Summary of information to detern clamshell form factors positioned at the corne	nine the margin for handsets with r of the Uniphantom2	262
Table W.1 – Relative standard deviation of α f	ound in Study 1 (without MPR)	267
Table W.2 – Maximum relative standard devia	tion of α found in Study 2 (with MPR)	269