IIN-AS

Institut luxembourgeois de la normalisation de l'accréditation, de la sécurité et qualité des produits et services

ILNAS-EN IEC 62836:2024

Measurement of internal electric field in insulating materials - Pressure wave propagation method

Mesurage du champ électrique interne dans les matériaux isolants - Méthode de l'onde de pression

Messung des inneren elektrischen Feldes in Isoliermaterialien - Methode der Druckwellenausbreitung

National Foreword

This European Standard EN IEC 62836:2024 was adopted as Luxembourgish Standard ILNAS-EN IEC 62836:2024.

Every interested party, which is member of an organization based in Luxembourg, can participate for FREE in the development of Luxembourgish (ILNAS), European (CEN, CENELEC) and International (ISO, IEC) standards:

- Participate in the design of standards
- Foresee future developments
- Participate in technical committee meetings

https://portail-qualite.public.lu/fr/normes-normalisation/participer-normalisation.html

THIS PUBLICATION IS COPYRIGHT PROTECTED

Nothing from this publication may be reproduced or utilized in any form or by any mean - electronic, mechanical, photocopying or any other data carries without prior permission!

EUROPEAN STANDARD^{ILNAS-EN IEC 62836:2024} EN IEC 62836

NORME EUROPÉENNE

EUROPÄISCHE NORM

April 2024

ICS 17.220.99; 29.035.01

English Version

Measurement of internal electric field in insulating materials -Pressure wave propagation method (IEC 62836:2024)

Mesurage du champ électrique interne dans les matériaux isolants - Méthode de l'onde de pression (IEC 62836:2024) Messung des inneren elektrischen Feldes in Isoliermaterialien - Methode der Druckwellenausbreitung (IEC 62836:2024)

This European Standard was approved by CENELEC on 2024-04-03. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2024 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 112/627/FDIS, future edition 1 of IEC 62836, prepared by IEC/TC 112 "Evaluation and qualification of electrical insulating materials and systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62836:2024.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2025-01-03 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2027-04-03 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC 62836:2024 was approved by CENELEC as a European Standard without any modification.

IEC 62836

Edition 1.0 2024-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement of internal electric field in insulating materials – Pressure wave propagation method

Mesurage du champ électrique interne dans les matériaux isolants – Méthode de l'onde de pression

– 2 –

CONTENTS

INTRODUCTION 7 1 Scope 8 2 Normative references 8 3 Terms, definitions and abbreviated terms 8 3.1 Terms and definitions 8 3.2 Abbreviated terms 8 3.2 Abbreviated terms 8 4 Principle of the method 9 5 Samples 12 6 Electrode materials 12 7 Pressure pulse wave generation 12 8 Set-up of the measurement 12 8 Set-up of the measurement 13 9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1	FOREWORD			
1 Scope 8 2 Normative references 8 3 Terms, definitions and abbreviated terms 8 3.1 Terms and definitions 8 3.1 Terms and definitions 8 3.1 Terms and definitions 8 3.2 Abbreviated terms 8 4 Principle of the method 9 5 Samples 12 6 Electrode materials 12 7 Pressure pulse wave generation 12 8 Set-up of the measurement 13 9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.1 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification	INTRODUCTION			
2 Normative references	1 Scop	e	8	
3 Terms, definitions and abbreviated terms	2 Norm	ative references	8	
3.1 Terms and definitions	3 Term	s, definitions and abbreviated terms	8	
3.2 Abbreviated terms	3.1	3.1 Terms and definitions		
4 Principle of the method	3.2	Abbreviated terms	8	
5 Samples 12 6 Electrode materials 12 7 Pressure pulse wave generation 12 8 Set-up of the measurement 13 9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the original signal for the PWP 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 22 A.2 Analysis of the resiliency effect and correction procedu	4 Princ	iple of the method	9	
6 Electrode materials 12 7 Pressure pulse wave generation 12 8 Set-up of the measurement 13 9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 10 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 20 A.1 Simple integration limitation 22 A.2 Analys	5 Samp	oles	12	
7 Pressure pulse wave generation 12 8 Set-up of the measurement 13 9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP method on a planar sample 22 22 A.1 Simple integration limitation 22 A.2 Analysis of the c	6 Elect	rode materials		
8 Set-up of the measurement. 13 9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction coefficients </td <td>7 Press</td> <td>sure pulse wave generation</td> <td></td>	7 Press	sure pulse wave generation		
9 Calibrating the electric field 14 10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP method on a planar sample. 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23	8 Set-u	p of the measurement		
10 Measurement procedure 14 11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code <	9 Calib	rating the electric field		
11 Data processing for experimental measurement 15 12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification of the measuring system </td <td>10 Meas</td> <td>urement procedure</td> <td></td>	10 Meas	urement procedure		
12 Space charge distribution measurement 16 13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 27 Annex B (informative) Lineari	11 Data	processing for experimental measurement		
13 Impact of coaxial geometry 16 13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification of the measuring system 29 B.1 Linearity verification 29 B.2 Sample conditions <t< td=""><td>12 Space</td><td>e charge distribution measurement</td><td>16</td></t<>	12 Space	e charge distribution measurement	16	
13.1 Measuring set-up of pressure wave propagation method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 20 Annex A (informative) Preconditional method of the original signal for the PWP 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification 29 B.1 Linearity verification 29 B.1 Linearity verificat	13 Imna	t of coaxial geometry	16	
10:1 measuring solved pressure wave propagator method for the coaxial geometry sample 16 13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification of the measuring system 29 B.1 Linearity verification 29 B.2 Sample conditions. 29 B.3 Linearity verification procedure	13.1	Measuring set-up of pressure wave propagation method for the coavial		
13.2 Physical model in coaxial geometry 17 13.3 Measuring conditions 18 13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification of the measuring system 29 B.1 Linearity verification procedure 29 29 B.3 Linearity verification procedure 29 B.4 Example of li	10.1	geometry sample		
13.3Measuring conditions1813.4Calibration of electric field for a coaxial sample1913.4.1Summary1913.4.2Linearity verification1913.4.3Validity verification of the ratio between two current peaks1913.4.4Method for retrieving internal electric field from the measured current20Annex A (informative)Preconditional method of the original signal for the PWP22A.1Simple integration limitation22A.2Analysis of the resiliency effect and correction procedure23A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	13.2	Physical model in coaxial geometry	17	
13.4 Calibration of electric field for a coaxial sample 19 13.4.1 Summary 19 13.4.2 Linearity verification 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.3 Validity verification of the ratio between two current peaks 19 13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP method on a planar sample 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification of the measuring system 29 B.1 Linearity verification 29 B.2 Sample conditions 29 B.3 Linearity verification procedure 29 B.4 Example of linearity verification 29	13.3	Measuring conditions		
13.4.1Summary1913.4.2Linearity verification1913.4.3Validity verification of the ratio between two current peaks1913.4.4Method for retrieving internal electric field from the measured current signal20Annex A (informative)Preconditional method of the original signal for the PWP22A.1Simple integration limitation22A.2Analysis of the resiliency effect and correction procedure23A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative)Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.4Example of linearity verification29B.4Example of linearity verification29	13.4	Calibration of electric field for a coaxial sample	19	
13.4.2Linearity verification1913.4.3Validity verification of the ratio between two current peaks1913.4.4Method for retrieving internal electric field from the measured current signal20Annex A (informative)Preconditional method of the original signal for the PWP20method on a planar sample22A.1Simple integration limitation22A.2Analysis of the resiliency effect and correction procedure23A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative)Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29B.4Example of linearity verification29	13.4.	1 Summary		
13.4.3Validity verification of the ratio between two current peaks1913.4.4Method for retrieving internal electric field from the measured current signal20Annex A (informative)Preconditional method of the original signal for the PWPmethod on a planar sample22A.1Simple integration limitation22A.2Analysis of the resiliency effect and correction procedure23A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative)Linearity verification of the measuring system29B.1Linearity verification29B.3Linearity verification procedure29B.4Example of linearity verification29B.4Example of linearity verification29	13.4.	2 Linearity verification	19	
13.4.4 Method for retrieving internal electric field from the measured current signal 20 Annex A (informative) Preconditional method of the original signal for the PWP method on a planar sample 22 A.1 Simple integration limitation 22 A.2 Analysis of the resiliency effect and correction procedure 23 A.3 Example of the correction procedure on a PE sample 24 A.4 Estimation of the correction coefficients 25 A.5 MATLAB® code 27 Annex B (informative) Linearity verification of the measuring system 29 B.1 Linearity verification 29 B.3 Linearity verification procedure 29 B.4 Example of linearity verification 29	13.4.	3 Validity verification of the ratio between two current peaks		
Annex A (informative) Preconditional method of the original signal for the PWPmethod on a planar sample.A.1Simple integration limitationA.2A.2Analysis of the resiliency effect and correction procedureA.3Example of the correction procedure on a PE sampleA.4Estimation of the correction coefficientsA.5MATLAB® codeAnnex B (informative) Linearity verification of the measuring systemB.1Linearity verificationB.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29B.4Example of linearity verification	13.4.	4 Method for retrieving internal electric field from the measured current signal	20	
A.1Simple integration limitation22A.2Analysis of the resiliency effect and correction procedure23A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	Annex A (method or	informative) Preconditional method of the original signal for the PWP a planar sample	22	
A.2Analysis of the resiliency effect and correction procedure23A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	A.1	Simple integration limitation	22	
A.3Example of the correction procedure on a PE sample24A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	A.2	Analysis of the resiliency effect and correction procedure	23	
A.4Estimation of the correction coefficients25A.5MATLAB® code27Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	A.3	Example of the correction procedure on a PE sample	24	
A.5MATLAB® code27Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	A.4	Estimation of the correction coefficients	25	
Annex B (informative) Linearity verification of the measuring system29B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	A.5	MATLAB® code	27	
B.1Linearity verification29B.2Sample conditions29B.3Linearity verification procedure29B.4Example of linearity verification29	Annex B (informative) Linearity verification of the measuring system	29	
B.2Sample conditions	B.1	Linearity verification	29	
B.3Linearity verification procedure29B.4Example of linearity verification29	B.2	Sample conditions		
B.4 Example of linearity verification	B.3	Linearity verification procedure		
Anney O (informative) Measurement exemples for planer planer semples	B.4	Example of linearity verification		
Annex C (mornative) measurement examples for planar plaque samples				
C.1 Samples	0.1 C 2	Drossuro pulso generation		
C.3 Calibration of sample and signal	0.2	Calibration of sample and signal	ວ∠ ເວ	
C.4 Testing sample and experimental results	C.4	Testing sample and experimental results		
C 4 1 Measurement results 33	C.4.1	Measurement results		

ILNAS-EN IEC 62836:2024

IEC 62836:20	24 © IEC 2024 – 3 –	
C.4.2	Internal electric field distribution in the testing sample	34
C.4.3	Distribution of space charge density in the testing sample	36
Annex D (info	rmative) Measurement examples for coaxial geometry samples	38
D.1 Exa	ample of linearity verification of coaxial geometry	
D.1.1	Sample conditions	38
D.1.2	Linearity verification procedure	38
D.1.3	Example of linearity verification	38
D.2 Ver	ification of the current peak area ratio between the outer and inner	
ele	ctrodes	39
D.2.1	Verification principle	39
D.2.2	Example of verification of the current peak area ratio	40
D.3 Tes	ting sample and experimental results	40
D.3.1	Raw results of measurements	40
D.3.2	Electric field distribution in the coaxial sample	42
D.3.3	Space charge distribution in the coaxial sample	44
Bibliography		46

Figure 1 – Principle of the PWP method	11
Figure 2 – Measurement set-up for the PWP method	13
Figure 3 – Sample of circuit to protect the amplifier from damage by a small discharge on the sample	13
Figure 4 – Diagram of the pressure wave propagation method set-up for a coaxial sample	17
Figure 5 – Diagram of wave propagation of PWP for a coaxial geometry sample	17
Figure 6 – Diagram of the propagation of pressure wave on the section of a cylinder	19
Figure 7 – Flowchart for the computation of the electric field in a coaxial sample from PWP measured currents	21
Figure A.1 – Comparison between practical and ideal pressure pulses	22
Figure A.2 – Original signal of the sample free of charge under moderate voltage	23
Figure A.3 – Comparison between original and corrected reference signals with a sample free of charge under moderate voltage	24
Figure A.4 – Electric field in a sample under voltage with space charge calculated from original and corrected signals	25
Figure A.5 – Geometrical characteristics of the reference signal for the correction coefficient estimation	26
Figure A.6 – Reference signal corrected with coefficients graphically obtained and adjusted	26
Figure A.7 – Electric field in a sample under voltage with space charge calculated with graphically obtained coefficient and adjusted coefficient	27
Figure B.1 – Voltage signals obtained from the oscilloscope by the amplifier with different amplifications	30
Figure B.2 – Current signals induced by the sample, considering the input impedance and the amplification of the amplifier	30
Figure B.3 – Relationship between the measured current peak of the first electrode and applied voltage	31
Figure C.1 – Measured current signal under −5,8 kV	32
Figure C.2 – First measured current signal (< 1 min)	33
Figure C.3 – Measured current signal after 1,5 h under −46,4 kV	33

Figure C.4 – Measured current signal without applied voltage, after 1.5 h under	
-46,4 kV	34
Figure C.5 – Internal electric field distribution under -5,8 kV	34
Figure C.6 – Internal electric field distribution under -46,4 kV, at the initial state	35
Figure C.7 – Internal electric field distribution after 1,5 h under -46,4 kV	35
Figure C.8 – Internal electric field distribution without applied voltage after 1,5 h under -46,4 kV	36
Figure C.9 – Space charge distribution after 1,5 h under –46,4 kV	37
Figure C.10 – Space charge distribution without applied voltage after 1,5 h under -46,4 kV	37
Figure D.1 – Measured currents from the LDPE coaxial sample under different applied voltages in a few minutes	39
Figure D.2 – Relationships between the peak amplitude of the measured current at outer and inner electrodes and applied voltage	39
Figure D.3 – First measured current signal (< 1 min) for the coaxial sample4	10
Figure D.4 – Measured current signals for the coaxial sample at beginning and after 2 h under -90,0 kV	1
Figure D.5 – Measured current signals for the coaxial sample after 2 h under $-90,0$ kV, and without applied voltage after 2 h under high voltage4	1
Figure D.6 – Internal electric field distribution under –22,5 kV for the coaxial sample4	2
Figure D.7 – Internal electric field distribution under –90,0 kV for the coaxial sample, at the initial state	13
Figure D.8 – Internal electric field distribution after 2 h under –90,0 kV4	13
Figure D.9 – Internal electric field distribution without applied voltage after 2 h under -90,0 kV	4
Figure D.10 – Space charge distribution with and without applied voltage after 2 h under -90,0 kV	15

Table A.1 – Variants of symbols used in the text	27
Table D.2 – Analysis of ratio between theoretical and measured peak area for	
measured current signal	40