IIN-AS

Institut luxembourgeois de la normalisation de l'accréditation, de la sécurité et qualité des produits et services

ILNAS-EN IEC 62836:2024

Mesurage du champ électrique interne dans les matériaux isolants - Méthode de l'onde de pression

Measurement of internal electric field in insulating materials - Pressure wave propagation method

Messung des inneren elektrischen Feldes in Isoliermaterialien - Methode der Druckwellenausbreitung

Avant-propos national

Cette Norme Européenne EN IEC 62836:2024 a été adoptée comme Norme Luxembourgeoise ILNAS-EN IEC 62836:2024.

Toute personne intéressée, membre d'une organisation basée au Luxembourg, peut participer gratuitement à l'élaboration de normes luxembourgeoises (ILNAS), européennes (CEN, CENELEC) et internationales (ISO, IEC) :

- Influencer et participer à la conception de normes
- Anticiper les développements futurs
- Participer aux réunions des comités techniques

https://portail-qualite.public.lu/fr/normes-normalisation/participer-normalisation.html

CETTE PUBLICATION EST PROTÉGÉE PAR LE DROIT D'AUTEUR

Aucun contenu de la présente publication ne peut être reproduit ou utilisé sous quelque forme ou par quelque procédé que ce soit - électronique, mécanique, photocopie ou par d'autres moyens sans autorisation préalable !

NORME EUROPÉENNE EUROPÄISCHE NORM EUROPEAN STANDARD

ICS 17.220.99; 29.035.01

Version française

Mesurage du champ électrique interne dans les matériaux isolants - Méthode de l'onde de pression (IEC 62836:2024)

Messung des inneren elektrischen Feldes in Isoliermaterialien - Methode der Druckwellenausbreitung (IEC 62836:2024) Measurement of internal electric field in insulating materials - Pressure wave propagation method (IEC 62836:2024)

La présente Norme Européenne a été adoptée par le CENELEC le 2024-04-03. Les membres du CENELEC sont tenus de se soumettre au Règlement Intérieur du CEN/CENELEC, qui définit les conditions dans lesquelles doit être attribué, sans modification, le statut de norme nationale à cette Norme Européenne.

Les listes mises à jour et les références bibliographiques relatives à ces normes nationales peuvent être obtenues auprès du CEN-CENELEC Management Centre ou auprès des membres du CENELEC.

La présente Norme Européenne existe en trois versions officielles (allemand, anglais, français). Une version dans une autre langue faite par traduction sous la responsabilité d'un membre du CENELEC dans sa langue nationale, et notifiée au CEN-CENELEC Management Centre, a le même statut que les versions officielles.

Les membres du CENELEC sont les comités électrotechniques nationaux des pays suivants: Allemagne, Autriche, Belgique, Bulgarie, Chypre, Croatie, Danemark, Espagne, Estonie, Finlande, France, Grèce, Hongrie, Irlande, Islande, Italie, Lettonie, Lituanie, Luxembourg, Malte, Norvège, Pays-Bas, Pologne, Portugal, République de Macédoine du Nord, République de Serbie, République Tchèque, Roumanie, Royaume-Uni, Slovaquie, Slovénie, Suède, Suisse et Turquie.

Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung European Committee for Electrotechnical Standardization

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Bruxelles

© 2024 CENELEC Tous droits d'exploitation sous quelque forme et de quelque manière que ce soit réservés dans le monde entier aux membres du CENELEC.

Avant-propos européen

Le texte du document 112/627/FDIS, future édition 1 de IEC 62836, préparé par le CE 112 de l'IEC, "Evaluation et qualification des systèmes et matériaux d'isolement électrique", a été soumis au vote parallèle IEC-CENELEC et approuvé par le CENELEC en tant que EN IEC 62836:2024.

Les dates suivantes sont fixées:

- date limite à laquelle ce document doit être mis en application au niveau national par publication d'une norme nationale identique ou par entérinement
- date limite à laquelle les normes nationales conflictuelles doivent être (dow) 2027-04-03 annulées

L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. Le CENELEC ne saurait être tenu pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur existence.

Il convient que l'utilisateur adresse tout retour d'information et toute question concernant le présent document à l'organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se trouve sur le site web du CENELEC.

Notice d'entérinement

Le texte de la Norme internationale IEC 62836:2024 a été approuvé par le CENELEC comme Norme Européenne sans aucune modification.

IEC 62836

Edition 1.0 2024-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement of internal electric field in insulating materials – Pressure wave propagation method

Mesurage du champ électrique interne dans les matériaux isolants – Méthode de l'onde de pression

SOMMAIRE

AVANT-F	PROPOS	51	
INTROD	INTRODUCTION		
1 Dom	1 Domaine d'application		
2 Réfé	érences normatives	54	
3 Terr	nes, définitions et abréviations	54	
3.1	Termes et définitions	54	
3.2	Abréviations	54	
4 Prin	cipe de la méthode	55	
5 Écha	antillons	58	
6 Mate	ériaux d'électrodes	58	
7 Gén	7 Génération de l'impulsion de pression		
8 Mon	tage de mesure	59	
9 Étal	onnage du champ électrique	60	
10 Proc	cédure de mesure		
11 Trai	tement des données pour les mesurages expérimentaux	61	
12 Mes	urage de la rénartition des charges d'esnace	62	
12 MC3		62	
12 1	Montage de magure pour la méthode de l'onde de prossion dans le ses d'un	02	
13.1	échantillon à géométrie coaxiale	62	
13.2	Modèle physique à géométrie coaxiale	63	
13.3	Conditions de mesure	65	
13.4	Étalonnage du champ électrique dans le cas d'un échantillon coaxial	66	
13.4	.1 Récapitulatif	66	
13.4	13.4.2 Vérification de la linéarité		
13.4	.3 Vérification de la validité du rapport entre deux pics de courant	66	
13.4	.4 Méthode de déduction du champ électrique interne à partir du signal de courant mesuré	66	
Annexe A	A (informative) Méthode de préconditionnement du signal d'origine pour la		
méthode	PWP sur un échantillon plan	68	
A.1	Limite d'intégration simple	68	
A.2	Analyse de l'effet de résilience et procédure de correction de la résilience	69	
A.3	Exemple de procédure de correction sur un échantillon en PE	70	
A.4	Estimation des coefficients de correction	71	
A.5		73	
Annexe E	(Informative) verification de la linearité du système de mesure	75	
B.1	Vérification de la linéarité	/5	
B.2	Conditions d'échantilionnage	/ 5	
B.3 B.4	Frocedure de vérification de la linéarité	75 75	
D.4 Anneve (C (informative) Exemples de mesurages pour les échantillons plans de type	75	
plaque		78	
C.1	Échantillons	78	
C.2	Génération de l'impulsion de pression	78	
C.3	Étalonnage de l'échantillon et du signal	78	
C.4	Échantillon d'essai et résultats expérimentaux	79	
C.4.	1 Résultats de mesure	79	

IEC 62836:202	24 © IEC 2024 – 49 –	
C.4.2	Répartition du champ électrique interne dans l'échantillon d'essai	80
C.4.3	Répartition de la densité volumique des charges d'espace dans l'échantillon d'essai	83
Annexe D (info	ormative) Exemples de mesurages sur des échantillons à géométrie	
D.1 Exe	mple de vérification de la linéarité pour la géométrie coaxiale	
D.1.1	Conditions d'échantillonnage	85
D.1.2	Procédure de vérification de la linéarité	85
D.1.3	Exemple de vérification de la linéarité	85
D.2 Véri exté	fication du rapport des aires des pics de courant entre les électrodes rieure et intérieure	
D.2.1	Principe de vérification	
D.2.2	Exemple de vérification du rapport des aires des pics de courant	
D.3 Éch	antillon d'essai et résultats expérimentaux	
D.3.1	Résultats de mesure bruts	
D.3.2	Répartition du champ électrique dans l'échantillon coaxial	
D.3.3	Répartition des charges d'espace dans l'échantillon coaxial	91
Bibliographie		93

Figure 1 – Schéma de principe de la méthode PWP	57
Figure 2 – Montage de mesure pour la méthode PWP	59
Figure 3 – Échantillon de circuit visant à protéger l'amplificateur contre les dommages dus à une faible décharge sur l'échantillon	59
Figure 4 – Schéma du montage de mesure pour la méthode de l'onde de pression dans le cas d'un échantillon coaxial	63
Figure 5 – Schéma de propagation des ondes selon la méthode PWP dans le cas d'un échantillon à géométrie coaxiale	64
Figure 6 – Schéma de propagation des ondes de pression sur la section d'un cylindre	65
Figure 7 – Organigramme de calcul du champ électrique dans un échantillon coaxial à partir des courants mesurés par la méthode PWP	67
Figure A.1 – Comparaison entre les impulsions de pression réelles et idéales	68
Figure A.2 – Signal d'origine de l'échantillon sans charges et sous une tension modérée	69
Figure A.3 – Comparaison entre les signaux de référence d'origine et corrigé avec un échantillon sans charges et sous une tension modérée	70
Figure A.4 – Champ électrique dans un échantillon sous tension et avec charges d'espace, calculé à partir des signaux d'origine et corrigé	71
Figure A.5 – Caractéristiques géométriques du signal de référence pour l'estimation des coefficients de correction	72
Figure A.6 – Signal de référence corrigé à l'aide d'un coefficient déterminé graphiquement et d'un coefficient ajusté	72
Figure A.7 – Champ électrique dans un échantillon sous tension appliquée et avec charges d'espace, calculé à l'aide d'un coefficient déterminé graphiquement et d'un coefficient ajusté	73
Figure B.1 – Signaux de tension mesurés par l'amplificateur avec différents gains et enregistrés par l'oscilloscope	76
Figure B.2 – Signaux de courant induits par l'échantillon, en fonction de l'impédance d'entrée et du gain de l'amplificateur	76

Figure B.3 – Relation entre le pic de courant mesuré aux bornes de la première électrode et la tension appliquée	.77
Figure C.1 – Signal de courant mesuré sous une tension de –5,8 kV	.79
Figure C.2 – Premier signal de courant mesuré (< 1 min)	.79
Figure C.3 – Signal de courant mesuré après 1,5 h sous une tension de –46,4 kV	.80
Figure C.4 – Signal de courant mesuré sans tension appliquée, après 1,5 h sous une tension de –46,4 kV	. 80
Figure C.5 – Répartition du champ électrique interne sous une tension de –5,8 kV	.81
Figure C.6 – Répartition du champ électrique interne sous une tension de –46,4 kV, à l'état initial	.81
Figure C.7 – Répartition du champ électrique interne après 1,5 h sous une tension de –46,4 kV	. 82
Figure C.8 – Répartition du champ électrique interne sans tension appliquée, après 1,5 h sous une tension de –46,4 kV	. 82
Figure C.9 – Répartition des charges d'espace après 1,5 h sous une tension de -46,4 kV	.83
Figure C.10 – Répartition des charges d'espace sans tension appliquée, après 1,5 h sous une tension de –46,4 kV	. 84
Figure D.1 – Courants mesurés sur l'échantillon coaxial en LDPE sous différentes tensions appliquées dans un délai de quelques minutes	.86
Figure D.2 – Relation entre l'amplitude de crête du courant mesuré aux bornes des électrodes extérieure et intérieure et la tension appliquée	.86
Figure D.3 – Premier signal de courant mesuré sur l'échantillon coaxial (< 1 min)	.87
Figure D.4 – Signaux de courant mesurés sur l'échantillon coaxial au début et après 2 h sous une tension de –90,0 kV	. 88
Figure D.5 – Signaux de courant mesurés sur l'échantillon coaxial après 2 h sous une tension de –90,0 kV, et sans tension appliquée après 2 h sous une haute tension	.88
Figure D.6 – Répartition du champ électrique interne sous une tension de –22,5 kV sur l'échantillon coaxial	. 89
Figure D.7 – Répartition du champ électrique interne sous une tension de –90,0 kV sur l'échantillon coaxial, à l'état initial	. 90
Figure D.8 – Répartition du champ électrique interne après 2 h sous une tension de – 90,0 kV	. 90
Figure D.9 – Répartition du champ électrique interne sans tension appliquée, après 2 h sous une tension de –90,0 kV	.91
Figure D.10 – Répartition des charges d'espace avec et sans tension appliquée, après 2 h sous une tension de –90,0 kV	.92

Tableau A.1 – Variantes des symboles utilisés dans le texte	73
Tableau D.2 – Analyse du rapport entre l'aire des pics théorique et l'aire des pics	
mesurée pour le signal de courant mesuré	87