Institut luxembourgeois de la normalisation de l'accréditation, de la sécurité et qualité des produits et services ILNAS-EN 1366-3:2009 # Fire resistance tests for service installations - Part 3: Penetration seals Essais de résistance au feu des installations techniques - Partie 3 : Calfeutrements de trémies Feuerwiderstandsprüfungen für Installationen - Teil 3: Abschottungen #### **National Foreword** This European Standard EN 1366-3:2009 was adopted as Luxembourgish Standard ILNAS-EN 1366-3:2009. Every interested party, which is member of an organization based in Luxembourg, can participate for FREE in the development of Luxembourgish (ILNAS), European (CEN, CENELEC) and International (ISO, IEC) standards: - Participate in the design of standards - Foresee future developments - Participate in technical committee meetings https://portail-qualite.public.lu/fr/normes-normalisation/participer-normalisation.html # THIS PUBLICATION IS COPYRIGHT PROTECTED Nothing from this publication may be reproduced or utilized in any form or by any mean - electronic, mechanical, photocopying or any other data carries without prior permission! # EUROPEAN STANDARD ILNAS-EN 1366-3:2009 EN 1366-3 # NORME EUROPÉENNE **EUROPÄISCHE NORM** February 2009 ICS 13.220.50 Supersedes EN 1366-3:2004 ### **English Version** # Fire resistance tests for service installations - Part 3: Penetration seals Essais de résistance au feu des installations techniques -Partie 3 : Calfeutrements de trémies Feuerwiderstandsprüfungen für Installationen - Teil 3: Abschottungen This European Standard was approved by CEN on 3 January 2009. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: Avenue Marnix 17, B-1000 Brussels Contents Page | | ord | | |--------------|--|------| | Introduction | | 5 | | 1 | Scope | 6 | | 2 | Normative references | 6 | | 3 | Terms and definitions | 8 | | 4 | Test equipment | | | 5 | Test conditions | | | 5.1 | Heating conditions | | | 5.2 | Pressure conditions | | | 6 | Test specimen | | | 6.1 | Size and distances | | | 6.2
6.3 | Number Design | | | 6.4 | Construction | | | 6.5 | Verification | 15 | | 7 | Installation of test specimen | 15 | | 7.1 | General | 15 | | 7.2
7.3 | Supporting construction | | | 7.3
7.4 | Installation of service(s) | | | 7.5 | Multiple penetration seals in one test specimen | | | 8 | Conditioning | 17 | | 9 | Application of instrumentation | | | 9.1 | Thermocouples | | | 9.2
9.3 | Integrity measurementPressure | | | | | | | 10
10.1 | Test procedure | | | 10.1 | Integrity | | | 10.3 | Other observations | | | 11 | Performance criteria | | | 11.1 | Integrity | | | 11.2
11.3 | Insulation | | | 12 | Test report | | | 13 | Field of direct application of test results | | | 13.1 | Orientation | . 20 | | 13.2 | Supporting construction | | | 13.3 | Services | | | 13.4
13.5 | Service support construction | | | | | | | Annex
A.1 | A (normative) Standard configuration for large cable penetration seals Structure of specimens | | | A.1
A.2 | Non-standard configuration | | | | | | | A.3 | Field of direct application | 28 | |--------|--|-----| | Anne | x B (normative) Standard configuration for small cable penetration seals | 42 | | B.1 | Structure of specimens | 42 | | B.2 | Field of direct application | | | B.3 | Non-standard configuration | | | ∆nne | x C (normative) Standard configuration and field of direct application for modular | | | , | systems and cable boxes | 49 | | C.1 | Modular Systems | | | C.2 | Cable boxes | | | C.3 | Non-standard configuration | | | Anne | x D (normative) Specimen design and field of direct application for bus bars | 56 | | D.1 | Structure of specimens | | | D.2 | Field of direct application | | | D.3 | Non-standard configuration | | | Δηηρ | x E (normative) Standard configuration and field of direct application for pipe | | | | penetration seals | 58 | | E.1 | Standard configuration for penetration seals for pipes according to 6.3.2 a) – | | | | "metal pipes" | 58 | | E.2 | Standard configuration for penetration seals for pipes according to 6.3.2 d) – | | | | "plastic pipes" | | | E.3 | Trunking and conduits | | | E.4 | Standard configuration for floor penetrations ending at floor level (e.g. floor drain) | 66 | | Anne | x F (normative) Standard configuration and field of direct application for large mixed | | | | penetration seals | 74 | | F.1 | General | | | F.2 | Standard Mixed Module | 74 | | F.3 | Standard configuration for combinations of type a) according to F.1.2 | 76 | | F.4 | Standard configuration for combinations of type b), c) and d) according to F.1.2 | 76 | | F.5 | Field of direct application | 77 | | Anne | x G (normative) Critical pipe/cable approach | 84 | | G.1 | General | | | G.2 | Definition of "critical" | 84 | | G.3 | Procedure selecting critical pipes from previous test data | 84 | | G.4 | Procedure selecting critical cables from previous test data | | | Anne | x H (informative) Explanatory notes | 87 | | H.1 | General | | | H.2 | Notes on the scope and application of test results | 87 | | H.3 | Notes on test conditions | | | H.4 | Notes on test construction | | | H.5 | Notes on test procedure | | | H.6 | Notes on test criteria | | | H.7 | Notes on validity of test results (field of application) | | | H.8 | Notes on test report | | | Biblio | graphy | 104 | | | | | ## **Foreword** This document (EN 1366:2009) has been prepared by Technical Committee CEN/TC 127 "", the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2009, and conflicting national standards shall be withdrawn at the latest by August 2009. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN 1366-3:2004. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association. Annexes A to G are normative. Annex H is informative. EN 1366, Fire resistance tests for service installations consists of the following: Part 1: Ducts Part 2: Fire dampers Part 3: Penetration seals Part 4: Linear joint seals Part 5: Service ducts and shafts Part 6: Raised access floors and hollow floors Part 7: Conveyors systems and their closures Part 8: Smoke extraction ducts Part 9: Single compartment smoke extraction ducts Part 10: Smoke control dampers (in course of preparation) Part 11: Protective systems for essential services (in course of preparation) According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. # Introduction This part of this European Standard has been prepared to provide a method of test for assessing the contribution of a penetration seal to the fire resistance of separating elements when they have been penetrated by a service or services. CAUTION — The attention of all persons concerned with managing and carrying out this fire resistance test is drawn to the fact that fire testing may be hazardous and that there is a possibility that toxic and/or harmful smoke and gases may be evolved during the test. Mechanical and operational hazards may also arise during the construction of the test elements or structures, their testing and disposal of test residues. An assessment of all potential hazards and risks to health should be made and safety precautions should be identified and provided. Written safety instructions should be issued. Appropriate training should be given to relevant personnel. Laboratory personnel should ensure that they follow written safety instructions at all times. # 1 Scope This Part of EN 1366 specifies a method of test and criteria for the evaluation (including field of application rules) of the ability of a penetration seal to maintain the fire resistance of a separating element at the position at which it has been penetrated by a service. Penetration seals used to seal gaps around chimneys, air ventilation systems, fire rated ventilation ducts, fire rated service ducts, shafts and smoke extraction ducts are excluded from this standard except for mixed penetration seals. The fire resistance of those services itself cannot be assessed with the methods described in this standard. Supporting constructions are used in this standard to represent separating elements such as walls or floors. These simulate the interaction between the test specimen and the separating element into which the sealing system is to be installed in practice. This European Standard is used in conjunction with EN 1363-1. The purpose of this test described in this standard is to assess: - a) the effect of such penetrations on the integrity and insulation performance of the separating element concerned: - b) the integrity and insulation performance of the penetration seal; - c) the insulation performance of the penetrating service or services, and where necessary, the integrity failure of a service. No information can be implied by the test concerning the influence of the inclusion of such penetrations and sealing systems on the loadbearing capacity of the separating element. It is not the intention of this test to provide quantitative information on the rate of leakage of smoke and/or hot gases or on the transmission or generation of fumes. Such phenomena are only to be noted in describing the general behaviour of test specimens during the test. This test is not intended to supply any information on the ability of the penetration seal to withstand stress caused by movements or displacements of the penetrating services. The risk of spread of fire downwards caused by burning material, which drips through a pipe downwards to floors below, cannot be assessed with this test. Explanatory notes to this test method are given in Annex H. All dimensions given without tolerances are nominal ones unless otherwise stated. ### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 520, Gypsum plasterboards – Definitions, requirements and test methods EN 1329-1, Plastics piping systems for soil and waste discharge (low and high temperature) within the building structure – Unplasticized poly(vinyl chloride) (PVC-U) – Part 1: Specifications for pipes, fittings and the system EN 1363-1:1999, Fire resistance tests - Part 1: General requirements - EN 1363-2, Fire resistance tests Part 2: Alternative and additional procedures - EN 1452-1, Plastics piping systems for water supply Unplasticized poly(vinyl chloride) (PVC-U) Part 1: General - EN 1453-1, Plastics piping systems with structured wall-pipes for soil and waste discharge (low and high temperature) inside buildings Unplasticized poly(vinyl chloride) (PVC-U) Part 1: Specifications for pipes and the system - EN 1455-1, Plastics piping systems for soil and waste discharge (low and high temperature) within the building structure Acrylonitrile-butadiene-styrene (ABS) Part 1: Requirements for pipes, fittings and the system - EN 1519-1, Plastics piping systems for soil and waste discharge (low and high temperature) within the building structure Polyethylene (PE) Part 1: Specifications for pipes, fittings and the system - EN 1565-1, Plastics piping systems with structured-wall pipes for soil and waste discharge (low and high temperature) inside buildings Styrene copolymer blends (SAN+PVC) Part 1: Specifications for pipes, fittings and the system - EN 1566-1, Plastics piping systems for soil and waste discharge (low and high temperature) within the building structure Chlorinated poly(vinyl chloride) (PVC-C) Part 1: Specifications for pipes, fittings and the system - EN 1992-1-2, Eurocode 2 Design of concrete structures Part 1-2: General rules Structural fire design - EN 1996-1-2, Eurocode 6 Design of masonry structures Part 1-2: General rules Structural fire design - EN 10305-4, Steel tubes for precision applications Technical delivery conditions Part 4: Seamless cold drawn tubes for hydraulic and pneumatic power systems - EN 10305-6, Steel tubes for precision applications Technical delivery conditions Part 6: Welded cold drawn tubes for hydraulic and pneumatic power systems - EN 12201-2, Plastics piping systems for water supply Polyethylene (PE) Part 2: Pipes - EN 12449, Copper and copper alloys Seamless, round tubes for general purposes - EN 12666-1, Plastics piping systems for non-pressure underground drainage and sewerage Polyethylene (PE) Part 1: Specifications for pipes, fittings and the system - EN 13501-1, Fire classification of construction products and building elements Part 1: Classification using test data from reaction to fire tests - EN 13501-2, Fire classification of construction products and building elements Part 2: Classification using data from fire resistance tests, excluding ventilation services - EN 13600, Copper and copper alloys Seamless copper tubes for electrical purposes - EN ISO 13943:2000, Fire safety Vocabulary (ISO 13943:2000) - EN 61386-21, Conduit systems for cable management Part 21: Particular requirements Rigid conduit systems (IEC 61386-21:2002) - HD 21.3, Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V Part 3: Non-sheathed cables for fixed wiring (IEC 60227-3:1993, modified)