

Institut luxembourgeois de la normalisation de l'accréditation, de la sécurité et qualité des produits et services

ILNAS-EN 1997-1:2004

Eurocode 7: Calcul géotechnique - Partie 1: Règles générales

Eurocode 7: Geotechnical design - Part 1: General rules

Eurocode 7 - Entwurf, Berechnung und Bemessung in der Geotechnik - Teil 1: Allgemeine Regeln

01011010010 0011010010110100101001101001101011

Avant-propos national

Cette Norme Européenne EN 1997-1:2004 a été adoptée comme Norme Luxembourgeoise ILNAS-EN 1997-1:2004.

Toute personne intéressée, membre d'une organisation basée au Luxembourg, peut participer gratuitement à l'élaboration de normes luxembourgeoises (ILNAS), européennes (CEN, CENELEC) et internationales (ISO, IEC):

- Influencer et participer à la conception de normes
- Anticiper les développements futurs
- Participer aux réunions des comités techniques

https://portail-qualite.public.lu/fr/normes-normalisation/participer-normalisation.html

CETTE PUBLICATION EST PROTÉGÉE PAR LE DROIT D'AUTEUR

Aucun contenu de la présente publication ne peut être reproduit ou utilisé sous quelque forme ou par quelque procédé que ce soit - électronique, mécanique, photocopie ou par d'autres moyens sans autorisation préalable!

NORME EUROPÉENNE ILNAS-EN 1997-1:2004 EN 1997-1 EUROPÄISCHE NORM

EUROPEAN STANDARD

Novembre 2004

ICS 91.120.20

Remplace ENV 1997-1:1994

Version Française

Eurocode 7: Calcul géotechnique - Partie 1: Règles générales

Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik - Teil 1: Allgemeine Regeln Eurocode 7: Geotechnical design - Part 1: General rules

La présente Norme européenne a été adoptée par le CEN le 23 avril 2004.

Les membres du CEN sont tenus de se soumettre au Règlement Intérieur du CEN/CENELEC, qui définit les conditions dans lesquelles doit être attribué, sans modification, le statut de norme nationale à la Norme européenne. Les listes mises à jour et les références bibliographiques relatives à ces normes nationales peuvent être obtenues auprès du Centre de Gestion ou auprès des membres du CEN.

La présente Norme européenne existe en trois versions officielles (allemand, anglais, français). Une version dans une autre langue faite par traduction sous la responsabilité d'un membre du CEN dans sa langue nationale et notifiée au Centre de Gestion, a le même statut que les versions officielles.

Les membres du CEN sont les organismes nationaux de normalisation des pays suivants: Allemagne, Autriche, Belgique, Chypre, Danemark, Espagne, Estonie, Finlande, France, Grèce, Hongrie, Irlande, Islande, Italie, Luxembourg, Lettonie, Lituanie, Malte, Norvège, Pays-Bas, Pologne, Portugal, République Tchèque, Royaume-Uni, Slovaquie, Slovénie, Suède et Suisse.

COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION

Centre de Gestion: rue de Stassart, 36 B-1050 Bruxelles

Sommaire

Avant-propos				
Sect	tion 1 Généralités	9		
1.1	Domaine d'application	9		
1.2	Références normatives	10		
1.3	Hypothèses			
1.4	Distinction entre les principes et les règles d'application	11		
1.5	Définitions			
1.6	Symboles	13		
Sect	tion 2 Bases du calcul géotechnique	20		
2.1	Exigences de calcul			
2.2	Situations de calcul			
2.3	Durabilité			
2.4	Dimensionnement géotechnique par le calcul			
2.5	Dimensionnement par mesures prescriptives			
2.6	Essais de chargement et essais sur modèles			
2.7	Méthode observationnelle			
2.8	Rapport de calcul géotechnique			
	tion 3 Données géotechniques			
3.1	Généralités			
3.2	Reconnaissances géotechniques			
3.3	Évaluation des paramètres géotechniques			
3.4	Rapport de reconnaissance des terrains			
Sec	tion 4 Surveillance de l'exécution des travaux, suivi et entretien	53		
4.1	Généralités	53		
4.2	Surveillance	54		
4.3	Vérification de l'état des terrains	55		
4.4	Contrôle de l'exécution des travaux	56		
4.5	Instrumentation et suivi (surveillance de l'ouvrage)			
4.6	Entretien	58		
Sect	tion 5 Remblais, rabattement de nappe, amélioration et renforcement			
	terrains	59		
5.1	Généralités	59		
5.2	Exigences fondamentales	59		
5.3	Construction des remblais	59		
5.4	Rabattement de nappe	63		
5.5	Amélioration et renforcement du terrain			
Sec	tion 6 Fondations superficielles	65		
6.1	Généralités			
6.2	États limites			
6.3	Actions et situations de calcul			
6.4	Considérations relatives au calcul et à la construction			
6.5	Calcul à l'état limite ultime			
6.6	Calcul à l'état limite de service			
6.7	Fondations au rocher; considérations complémentaires pour le calcul			
6.8	Calcul de la structure des fondations superficielles			
6.9	Préparation du sol d'assise			
	·			
	tion 7 Fondations sur pieux			
7.1	Généralités			
7.2	États limites	74		

7.3	Actions et situations de calcul	
7.4	Méthodes de calcul et considérations sur le calcul	
7.5	Essais de chargement de pieux	78
7.6	Pieux sous charge axiale	81
7.7	Pieux chargés latéralement	91
7.8	Calcul de la structure des pieux	93
7.9	Surveillance de l'exécution des travaux	
04	ion O. Anonono	0.0
	ion 8 Ancrages	
8.1	Généralités	
8.2	États limites	
8.3	Situations et actions de calcul	_
8.4	Considérations sur le calcul et la construction	
8.5	Calcul à l'état limite ultime	
8.6	Calcul à l'état limite de service	
8.7	Essais de contrôle	
8.8	Essais de réception	
8.9	Surveillance de l'exécution et suivi	101
Secti	ion 9 Ouvrages de soutènement	102
9.1	Généralités	
9.2	États limites	
9.3	Actions, données géométriques et situations de calcul	
9.4	Considérations relatives au calcul et à la construction	
9. 4 9.5	Détermination de la pression des terres	
9.5 9.6	Pressions d'eau	
9.0 9.7	Calcul à l'état limite ultime	
9. <i>1</i> 9.8	Calcul à l'état limite de service	
9.0		
Secti	ion 10 Rupture d'origine hydraulique	117
10.1	Généralités	117
10.2	Rupture par soulèvement hydraulique dû à la poussée d'Archimède	118
10.3	Rupture par annulation des contraintes effectives verticales	
10.4	Érosion interne	
10.5	Rupture par érosion régressive	
0 (
	ion 11 Stabilité générale	
11.1	Généralités	
11.2	États limites	
11.3	Actions et situations de calcul	
11.4	Considérations relatives au calcul et à la construction	
11.5	Calcul aux états limites ultimes	
11.6	Calcul aux états limites de service	
11.7	Surveillance	129
Secti	ion 12 Remblais	130
12.1	Généralités	
12.2	,	
12.3	Actions et situations de calcul	
12.4	Considérations relatives au calcul et à la construction	
12.5	Calcul aux états limites ultimes	
12.6	Calcul aux états limites de service	
12.7		
		133
Anne	exe A (normative) Facteurs partiels et de corrélation pour les états	
limite	es ultimes et valeurs recommandées	135
Anna	exe B (informative) Commentaires sur les facteurs partiels des	
	oches de calcul 1, 2 et 3	1 / 5
		143
	exe C (informative) Exemples de procédures pour déterminer les	
valeı	urs limites de la pression des terres sur les murs verticaux	148

Annexe D (informative) Exemple de methode analytique de calcul de la capacité portante	163
Annexe E (informative) Exemple de méthode semi-empirique pour l'estimation de la capacité portante	166
Annexe F (informative) Exemples de méthodes d'évaluation du tassement	167
Annexe G (informative) Exemple de méthode de détermination de la pression de contact présumée des fondations superficielles sur rocher	170
Annexe H (informative) Valeurs limites des déformations des structures et des mouvements des fondations	172
Annexe J (informative) Aide-mémoire pour la surveillance des travaux et le suivi du comportement des ouvrages	174

Avant-propos

Le présent document (EN 1997-1) a été préparé par le Comité Technique CEN/TC250 "Eurocodes structuraux", dont le secrétariat est tenue par le BSI. Le Comité technique CEN/TC250 est responsable de tous les Eurocodes structuraux.

Cette norme européenne devra recevoir le statut de norme nationale, soit par publication d'un texte identique, soit par entérinement, au plus tard en Mai **2005**, et toutes les normes nationales en contradiction devront être retirées au plus tard en **Mars 2010**.

Le présent document remplace l'ENV 1997-1:1994.

Selon le Règlement Intérieur du CEN/CENELEC, les instituts de normalisation nationaux des pays suivants sont tenus de mettre cette Norme européenne en application: Allemagne, Autriche, Belgique, Chypre, Danemark, Espagne, Estonie, Finlande, France, Grèce, Hongrie, Irlande, Islande, Italie, Luxembourg, Lettonie, Lituanie, Malte, Norvège, Pays-Bas, Pologne, Portugal, République Tchèque, Royaume-Uni, Slovaquie, Slovénie, Suède et Suisse.

Origine du programme des Eurocodes

En 1975, la Commission des Communautés Européennes arrêta un programme d'actions dans le domaine de la construction, sur la base de l'article 95 du Traité. L'objectif du programme était l'élimination des obstacles aux échanges et l'harmonisation des spécifications techniques.

Dans le cadre de ce programme d'action, la Commission prit l'initiative d'établir un ensemble de règles techniques harmonisées pour le dimensionnement des ouvrages ; ces règles, en un premier stade, serviraient d'alternative aux règles nationales en vigueur dans les États membres et, finalement, les remplaceraient.

Pendant quinze ans, la Commission, avec l'aide d'un Comité directeur comportant des représentants des États membres, pilota le développement du programme des Eurocodes, ce qui conduisit, au cours des années 1980 à la première génération de Codes européens.

En 1989, la Commission et les Etats membres de l'Union Européenne (UE) et de l'Association Européenne de Libre Échange (AELE) décidèrent, sur la base d'un accord¹ entre la Commission et le CEN¹ de transférer au CEN la préparation et la publication des Eurocodes par une série de mandats, afin de leur donner par la suite le statut de norme européenne (EN). Ceci établit de facto un lien entre les Eurocodes et les dispositions de toutes les Directives du Conseil et/ou Décisions de la Commission traitant des normes européennes (par exemple, la directive du Conseil 89/106/EEC sur les produits de construction - DPC - et les directives du Conseil 93/37/CEE, 92/50/CEE et 89/440/CEE sur les travaux et services publics ainsi que les directives équivalentes de l'AELE destinées à la mise en place du marché intérieur).

Le programme des Eurocodes structuraux comprend les normes suivantes, chacune étant en général constituée d'un certain nombre de parties :

EN 1990	Eurocode:	Bases du calcul des structures

EN 1991 Eurocode 1: Actions sur les structures

EN 1992 Eurocode 2: Calcul des structures en béton

¹ Accord entre la Commission des Communautés Européennes et le Comité Européen de Normalisation (CEN) concernant le travail sur les Eurocodes pour le dimensionnement ouvrages de bâtiment et de génie civil (BC/CEN/03/89).

EN 1993	Eurocode 3:	Calcul des structures en acier
EN 1994	Eurocode 4:	Calcul des structures mixtes acier-béton
EN 1995	Eurocode 5:	Calcul des structures en bois
EN 1996	Eurocode 6:	Calcul des ouvrages en maçonnerie
EN 1997	Eurocode 7:	Calcul géotechnique
EN 1998	Eurocode 8:	Calcul des structures pour leur résistance aux séismes
EN 1999	Eurocode 9:	Calcul des structures en aluminium

Les normes Eurocodes reconnaissent la responsabilité des autorités réglementaires de chaque État membre et ont sauvegardé le droit de celles-ci de déterminer, au niveau national, des valeurs relatives aux questions réglementaires de sécurité, là où ces valeurs continuent de différer d'un État à l'autre.

Statut et domaine d'application des Eurocodes

Les États membres de l'EU et de l'AELE reconnaissent que les Eurocodes servent de documents de référence pour les usages suivants :

- comme moyen de prouver la conformité des bâtiments et ouvrages de génie civil aux exigences essentielles de la directive du Conseil 89/106/CEE, en particulier l'exigence essentielle N°1 – Stabilité et résistance mécanique) et l'exigence essentielle N°2 (Sécurité en cas d'incendie);
- comme base de spécification des contrats pour les travaux de construction et les services techniques associés;
- comme cadre d'établissement de spécifications techniques harmonisées pour les produits de construction (EN et ATE).

Les Eurocodes, dans la mesure où ils concernent les travaux de constructions eux-mêmes, ont une relation directe avec les documents interprétatifs² visés à l'article 12 de la DPC, bien qu'ils soient de nature différente des normes de produits harmonisées³. Par conséquent, les aspects techniques résultant des travaux effectués pour les Eurocodes doivent être pris en compte de façon adéquate par les Comités techniques du CEN et/ou les groupes de travail de l'OETA qui élaborent les normes de produits, de façon à obtenir une compatibilité parfaite entre ces spécifications techniques et les Eurocodes.

Les normes Eurocodes fournissent des règles communes de conception structurale d'usage quotidien pour le calcul des structures entières et des produits qui les constituent, qu'ils soient de nature traditionnelle ou innovatrice. Les formes de construction ou les conceptions

² Selon l'article 3.3 de la DPC, les exigences essentielles (EE) doivent recevoir une forme concrète dans des documents interprétatifs (DI) pour assurer les liens nécessaires entre les exigences essentielles et les mandats pour normes européennes (EN) harmonisées et guides pour les agréments techniques européens (ATE) et ces agréments eux-mêmes.

³ Selon l'article 12 de la DPC, les documents interprétatifs doivent :

a) donner une forme concrète aux exigences essentielles en harmonisant la terminologie et les bases techniques et en indiquant des classes ou niveaux pour chaque exigence lorsque c'est nécessaire;

b) indiquer des méthodes pour corréler ces classes ou niveaux d'exigence avec les spécifications techniques (par exemple, méthodes de calcul et d'essai, règles techniques pour la conception, etc.;

c) servir de référence pour l'établissement de normes harmonisées et de guides pour agréments techniques européens. Les Eurocodes jouent de facto un rôle semblable pour l'EE 1 et pour une partie de l'EE 2.

inusuelles ne sont pas spécifiquement couvertes et il appartiendra en ces cas au concepteur de se procurer des bases spécialisées supplémentaires.

Normes nationales transposant les Eurocodes

Les normes nationales transposant les Eurocodes comprendront la totalité du texte des Eurocodes (toutes annexes incluses), tel que publié par le CEN ; ce texte peut être précédé d'une page nationale de titres et d'un Avant-Propos National et peut être suivi d'une annexe nationale.

L'annexe nationale peut seulement contenir des informations sur les paramètres laissés en attente dans l'Eurocode pour choix national, sous la désignation de Paramètres déterminés au niveau national, à utiliser pour les projets de bâtiments et ouvrages de génie civil à construire dans le pays concerné, il s'agit :

- de valeurs et/ou des classes là où des alternatives figurent dans l'Eurocode;
- de valeurs à utiliser là où seul un symbole est donné dans l'Eurocode ;
- de données propres à un pays (géographiques, climatiques, etc.), par exemple carte de neige,
- de la procédure à utiliser là où des procédures alternatives sont données dans l'Eurocode;

Il peut ausi contenir:

- de décisions sur l'usage des annexes informatives ;
- de références à des informations complémentaires non contradictoires pour aider l'utilisateur à appliquer l'Eurocode.

Liens entre les Eurocodes et les spécifications techniques harmonisées (EN et ATE) pour les produits

La cohérence est nécessaire entre les spécifications techniques harmonisées pour les produits de construction et les règles techniques pour les ouvrages⁴. En outre, toute information accompagnant la Marque CE des produits de construction se référant aux Eurocodes doit clairement faire apparaître quels Paramètres Déterminés au niveau National ont été pris en compte.

Informations additionnelles spécifiques à la norme EN 1997.

La norme EN 1997-1 donne des instructions et des conseils pour le calcul géotechnique des bâtiments et ouvrages de génie civil.

La norme EN 1997-1 est destinée aux clients (maître d'ouvrage), concepteurs, entrepreneurs et autorités publiques.

La norme EN 1997-1 est destinée à être utilisée avec les normes EN 1990 et EN 1991 à EN 1999.

Lors de l'application de la norme EN 1997-1 en pratique, il convient d'accorder une attention particulière aux hypothèses et conditions énoncées en 1.3.

⁴ voir les articles 33 et 12 de la DPC et les clauses 4.2, 4.3.1, 4.3.2 et 5.2 de la Directive DI 1.