IIN-AS

Institut luxembourgeois de la normalisation de l'accréditation, de la sécurité et qualité des produits et services

ILNAS-EN 62311:2008

Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz)

Evaluation des équipements électroniques et électriques en relation avec les restrictions d'exposition humaine aux champs

Bewertung von elektrischen und elektronischen Einrichtungen in Bezug auf Begrenzungen der Exposition von Personen in elektromagnetischen

National Foreword

This European Standard EN 62311:2008 was adopted as Luxembourgish Standard ILNAS-EN 62311:2008.

Every interested party, which is member of an organization based in Luxembourg, can participate for FREE in the development of Luxembourgish (ILNAS), European (CEN, CENELEC) and International (ISO, IEC) standards:

- Participate in the design of standards
- Foresee future developments
- Participate in technical committee meetings

https://portail-qualite.public.lu/fr/normes-normalisation/participer-normalisation.html

THIS PUBLICATION IS COPYRIGHT PROTECTED

Nothing from this publication may be reproduced or utilized in any form or by any mean - electronic, mechanical, photocopying or any other data carries without prior permission!

ILNAS-EN 62311:2008

EN 62311

NORME EUROPÉENNE

EUROPÄISCHE NORM

January 2008

ICS 97.030

Supersedes EN 50392:2004

English version

Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz) (IEC 62311:2007, modified)

Evaluation des équipements électroniques et électriques en relation avec les restrictions d'exposition humaine aux champs électromagnétiques (0 Hz - 300 GHz) (CEI 62311:2007, modifiée) Bewertung von elektrischen und elektronischen Einrichtungen in Bezug auf Begrenzungen der Exposition von Personen in elektromagnetischen Feldern (0 Hz - 300 GHz) (IEC 62311:2007, modifiziert)

This European Standard was approved by CENELEC on 2007-12-04. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2008 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 106/129/FDIS, future edition 1 of IEC 62311, prepared by IEC TC 106, Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure, was submitted to the IEC-CENELEC parallel vote.

A draft amendment, prepared by the Technical Committee CENELEC TC 106X, Electromagnetic fields in the human environment, was submitted to the Unique Acceptance Procedure.

The combined texts of IEC 62311:2007 and the draft amendment prAA were approved by CENELEC as EN 62311 on 2007-12-04.

This European Standard supersedes EN 50392:2004.

The following dates were fixed:

_	latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2009-01-01
_	latest date by which the national standards conflicting with the EN have to be withdrawn	(dow)	2011-01-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 62311:2007 was approved by CENELEC as a European Standard with agreed common modifications as given below.

COMMON MODIFICATIONS

2 Normative references

Add:

Council Recommendation 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), Official Journal L 199 of 30 July 1999

3 Definitions

3.4 **Replace** "current density" by "induced current density".

Replace the whole Clause 4 by:

4 Compliance criteria

The electronic and electrotechnical apparatus shall comply with the basic restriction as specified in Annex II of Council Recommendation 1999/519/EC.

NOTE 1 The time averaging in the EU-Recommendation applies.

The reference levels in the Council Recommendation 1999/519/EC on public exposure to electromagnetic fields are derived from the basic restrictions using worst-case assumptions about exposure. If the reference levels are met, then the basic restrictions will be complied with, but if the reference levels are exceeded, that does not necessarily mean that the basic restrictions will not be met. In some situations, it will be necessary to show compliance with the basic restrictions directly, but it may also be possible to derive compliance criteria that allow a simple measurement or calculation to demonstrate compliance with the basic restrictions under which exposures from a device may occur, rather than the conservative assumptions that underly the reference levels.

NOTE 2 The limit is the basic restriction.

If the technology in the apparatus is not capable of producing an E-field, H-field or contact current, at the normal user position, at levels higher than 1/2 the limit values then the apparatus is deemed to comply with the requirements in this standard in respect of that E-field, H-field or contact current without further assessment.

Bibliography

Add the following note for the standard indicated:

ISO/IEC 17025 NOTE Harmonized as EN ISO/IEC 17025:2005 (not modified).

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 60050-161	_1)	International Electrotechnical Vocabulary (IEV) - Chapter 161: Electromagnetic compatibility	_	-

¹⁾ Undated reference.

IEC 62311

Edition 1.0 2007-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz – 300 GHz)

Evaluation des équipements électroniques et électriques en relation avec les restrictions d'exposition humaine aux champs électromagnétiques (0 Hz – 300 GHz)

CONTENTS

FOR	EWORD	4				
1 S	Scope and object	6				
2 N	Normative references					
3 Т	Terms and definitions					
4 C	Compliance criteria					
5 A	Assessment methods					
6 E	valuation of compliance to limits	11				
7 A	Applicability of compliance assessment methods	12				
7	7.1 General	12				
7	2.2 Generic procedure for assessment of equipment	14				
8 S	Sources with multiple frequencies					
8	3.1 Introduction	17				
8	8.2 Frequency range from 1 Hz – 10 MHz (ICNIRP-based)	17				
	8.2.1 Frequency domain assessment	17				
	8.2.2 Time domain assessment	19				
8	B.3 Frequency range from 100 kHz – 300 GHz (ICNIRP-based)	21				
8	5.4 Frequency range from 0 kHz – 5 MHz (IEEE-based)	22				
	8.4.1 Frequency domain assessment	22				
0	8.4.2 Lime domain assessment	22				
8 0 4	6.5 Frequency range from 3 KHZ – 300 GHZ (IEEE-based)	23				
9 4		23				
9	0.1 General	23				
9	0.2 Items to be recorded in the assessment report	24 24				
	9.2.1 Assessment method	24 21				
	9.2.3 Equipment using external antennas	24 24				
10 lı	nformation to be supplied with the equipment	24				
Anne	x A (informative) Field calculation	25				
Anne	x B (informative) SAR compliance assessment	30				
Anne	x C (informative) Information for numerical modelling	32				
Anne	x D (informative) Measurements of physical properties and body currents	61				
Anne	x E (informative) Specific absorption rate (SAR)	65				
Anne	$\mathbf{x} \in (\text{informative})$ Measurement of E and H field	67				
Anno	$x \in (informative)$ Source modelling	70				
Anne		70				
Biblic	ography	73				
Figur	e 1 – Assessment flowchart	16				
Figur	e 2 – Schematic of "weighting circuit"	19				
Figur	e 3 – Dependency on frequency of the reference levels V plotted with smoothing					
edge:	S	19				
⊢ıgur	e 4 – I ranster function A	20				

62311 © IEC:2007

- 3 -

Figure A.1. Geometry of antenna with largest linear dimension D	25
Figure A.2. Current element $Idiain(a)$ at the origin of opherical accordinate system	20
Figure A.2 – Current element $Iutsin(wt)$ at the origin of spherical coordinate system	20
Figure A.3 – Ratio of E_{-} , H_{-} , and $E \times H$ field components for three turical enterpas	21
Figure A.4 – Ratio of $E \times H$ field components for three typical antennas	28
other line	29
Figure C.1 – Numerical model of a homogenous ellipsoid	34
Figure C.2 – Numerical model of a homogenous cuboid	35
Figure C.3a — Description of the whole body	36
Figure C.3b — Details of the construction of the head and shoulders	37
Figure C.3 – Numerical model of a homogenous human body	37
Figure C.4 – Schematic of straight wire	41
Figure C.5 – Schematic of circular coil	42
Figure C.6 – Block diagram of the method	43
Figure C.7 – Test situation for validation – Current loop in front of a cuboid	45
Figure C.8 – Distribution of the electric current density J in the planes $x = +0,20$ m (left) and $y = 0.0$ m (right)	46
Figure C.9 – Helmholtz coils and prolate spheroid	47
Figure C.10a – Magnetic field	
Figure C.10b – Induced current density	
Figure C.10 – Modelling results for a 60 cm by 30 cm prolate spheroid	
Figure C.11 – Induced current density	
Figure C.12a – Magnetic field	
Figure C.12b – Induced current density	
Figure C.12 – Modelling results for a 160 cm by 80 cm prolate spheroid	
Figure C.13 – Distribution of induced electric current density	
Figure C.14 – Schematic position of source <i>Q</i> against model <i>K</i>	51
Figure C.15 – Position of source <i>O</i> , sensor and model <i>K</i>	52
Figure C.16 – Hot spot	54
Figure C.17 – Gradient of flux density and area G	55
Figure C.18 – Equivalent coil	55
Figure C.19 – Gradients of flux density and coil	
Figure C.20 – Measurement distance and related distances	
Table 1 – Characteristics and parameters of the equipment to be considered	13
Table 2 – List of possible assessment methods	14
Table B.1 – Determining whole-body <i>SAR</i> implicit compliance levels	30
Table C.1 – Conductivity of tissue types	
Table C.2 – Relative permittivity of tissue types	40
Table C.3 – Summary of results	
Table C.4 – Values $G[m]$ of different coils with radius r_{coil} and distance d_{coil}	56
Table C.5 – Coupling factor $k \begin{bmatrix} \frac{A/m^2}{T} \end{bmatrix}$ at 50 Hz for the whole body	57